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Abstract. The paper presents a statistical evaluation of the typological
data about color naming systems across the languages of the world that
have been obtained by the World Color Survey. In a first step, we dis-
cuss a principal component analysis of the categorization data that led
to a small set of easily interpretable features dominant in color catego-
rization. These features were used for a dimensionality reduction of the
categorization data.
Using the thus preprocessed categorization data, we proceed to show that
available typological data support the hypothesis by Peter Gärdenfors
that the extension of color category are convex sets in the CIELab space
in all languages of the world.

1 Introduction: The World Color Survey

In their seminal study from 1969, Berlin and Kay investigated the color naming
systems of twenty typologically distinct languages. They showed that there are
strong universal tendencies both regarding the extension and the prototypical
examples for the meaning of the basic color terms in these languages.

This work sparked a controversial discussion. To counter the methodological
criticism raised in this context, Kay and several co-workers started the World

Color Survey project (WCS, see Cook et al. 2005 for details), a systematic
large-scale collection of color categorization data from a sizeable amount of ty-
pologically distinct languages across the world.

To be more precise, the WCS researchers collected field research data for 110
unwritten languages, working with an average of 24 native speakers for each of
these languages. During this study, the Munsell chips were used, a set of 330
chips of different colors covering 322 colors of maximal saturation plus eight
shades of gray.

The main chart is a 8×40 grid, with eight rows for different levels of lightness,
and 40 columns for different hues. Additionally there is a ten-level column of
achromatic colors, ranging from white via different shades of gray to black. The
level of granularity is chosen such that the difference between two neighboring
chips is minimally perceivable.

For the WCS, each test person was “asked (1) to name each of 330 Munsell
chips, shown in a constant, random order, and (2), exposed to a palette of these
chips and asked to to pick out the best example(s) (‘foci’) of the major terms
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elicited in the naming task” (quoted from the WCS homepage). The data from
this survey are freely available from the WCS homepage http://www.icsi.berkeley.edu/
wcs/data.html.

This invaluable source of empirical data has been used in a series of sub-
sequent evaluations that confirming Berlin and Kay’s hypothesis of universal
tendencies in color naming systems across languages (see for instance Kay and
Maffi 1999), even though the controversy about universality vs. relativism con-
tinues.

2 Feature extraction

For each informant, the outcome of the categorization task defines a partition of
the Munsell space into disjoint sets — one for each color term from their idiolect.

An inspection of the raw data reveals — not surprisingly — a certain level
of noise. This may be illustrated with the partitions of two speakers of a ran-
domly chosen language (Central Tarahumara, which is spoken in Mexico). They
are visualized in Figure 1. In the figure, colors represent color terms of Cen-

Fig. 1. Partitions for two speakers of Central Tarahumara

tral Tarahumara. We see striking similarities between the two speakers, but the
identity is not complete. They have slightly different vocabularies, and the ex-
tensions of common terms are not identical. Furthermore, the boundaries of the
extensions are unsharp and appear to be somewhat arbitrary at various places.
Also, some data points, like the two blue chips within the green area in the center
of the upper chart, seem to be due to plain mistakes. Similar observations apply
to the data from other participants.

To separate genuine variation between categories (of the same or of different
speakers, from the same or from different languages) on one hand from random
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variation due to the method of data collection on the other hand, I employed
principal component analysis (PCA), a standard technique for feature ex-
traction and dimensionality reduction that is widely used in pattern recognition
and machine learning.

The extension of a given term for a given speaker is a subset of the Munsell
space. This can be encoded as a 330-dimensional binary vector. Each Munsell
chip corresponds to one dimension. The vector has the value 1 at a dimension
if the corresponding chip belongs to the extension of the term in question, and
0 otherwise. By using this encoding I obtained a collection of 330d vectors, one
for each speaker/term pair.

PCA takes a set of data points in a vector space as input and linearly trans-
forms the coordinate system such that (a) the origin of the new coordinate system
is at the mean of the set of points, and (b) the new dimensions are mutually
stochastically independent regarding the variation within the data points. The
new dimensions, called principal components, can be ordered according to
the variance of the data points along that dimension.

One motivation for performing a PCA is dimensionality reduction. Sup-
pose the observed data points are the product of superimposing two sources of
variation — a large degree of “genuine” or “interesting” variation and a small
degree of irrelevant noise (and the latter is independent of the former). Then
PCA is a way to separate the former from the latter. If the observed data live in
an n-dimensional vector space but the genuine variation is m-dimensional (for
m < n), then the first m principal components can serve as an approximation
of this genuine variation.

In our domain of application, “interesting” variation is the variation between
the extensions of different categories, like the difference between the extensions
of English “red” and English “green” or between the extensions of English “blue”
and Russian “galubòj” (which denotes a certain light blue). Inessential variation
is the variation between the extensions that two speakers (of the same dialect of)
the same language assign to the same term. It is plausible to assume the latter to
be small in comparison to the former. So as a heuristic, we can assume that the
first m principal components (for some m < 330 that is yet to be determined)
capture the essence of the “interesting” variation.

Figure 2 depicts the proportion of the total variance in the data explained by
the principal components. The graphics does not motivate a specific choice of m.
For the time being, I will choose m = 10 because, as we will see shortly, the first
ten principal components can be interpreted straightforward, while the others
can’t. The main result of the paper does not depend on this choice though. The
first ten principal components jointly explain about 62.0% of the total variance
in the data. Each of the following 320 principal components only explains a small
additional proportion of variance of less than 1%.

It is worthwhile to look at the first ten principal components in some detail.
Figure 3 gives a visualization. Please note that each principal component is a
vector in the 330d space defined by the Munsell chips. The degree of lightness of
each chip in the visualization corresponds to the value of the principal component
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Fig. 2. Proportion of total variance explained by prinicpal components

PC 1 PC 2

PC 3 PC 4

PC 5 PC 6

PC 7 PC 8

PC 8 PC 10

Fig. 3. Visualization of the first ten principal components
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in question in the corresponding dimension. The values are scaled such that black
stands for the maximal and white for the minimal value, whatever their absolute
numerical value may be. Also note the directionality of principal components
is arbitrary — so inverting a chart would result in a visualization of the same
principal component. The important information is where the regions of extreme
values (black or white) are located, in opposition to gray, i.e. the non-extreme
values.

In all ten charts, we find clearly identifiable regions of extreme values. They
are listed in Table 1. With very few exceptions, the thus identified regions ap-

Table 1. Oppositions defined by the first ten principal components

PC extreme negative values extreme positive values

1 red, yellow green, blue
2 white red
3 black white, red
4 black, red, blue, purple yellow
5 black, brown red, green, blue
6 blue red, black, green
7 purple red, orange, blue
8 pink red, orange, yellow, white, purple
9 pink, orange black

10 brown black, light green, light blue

proximately correspond to (unions of) ten of the eleven universal basic color
terms identified by Berlin and Kay (1969). (The only universal basic color that
does not occur is gray. This is likely due to the fact that shades of gray are
under-represented in the Munsell chart in comparison to shades of other basic
colors. The absence of gray is thus likely an artefact of the way the data in
the WCS were collected.) Remarkably, the first six principal components jointly
define exactly the six primary colors black, white, red, green, blue and yellow.
(Purple has extreme values for PC4, but it is not distinguished from the neigh-
boring red and blue.) The 7th – 10th principal components additionally identify
the composite colors purple, brown, orange and pink. The 10th prinicipal com-
ponent furthermore identifies another composite color between green/blue and
white.

As can be seen from this discussion, the 10th principal component is less
clearly interpretable than the first nine. The remaining principal components
starting with the 11th lend themselves even less to an intuitive interpretation.

3 Dimensionality reduction

The first ten principal componentens define a linear 10d subspace of the original
330d space. We are operating under the assumption now that most of the “inter-
esting” variation between color categories takes place within this low-dimensional
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subspace, while variation outside this subspace is essentially noise. As the next
step, I projected the original 330d data points to that subspace. Technically this
means that in the transformed coordinate system defined by PCA, only the first
ten dimensions are considered, and the values of all data points for the other
320 dimensions are set to 0. The resulting vectors are transformed back into the
original coordinate system.

If visualized as a chart of gray values, the original data points correspond to
black-and-white pictures where the extension of the corresponding category is
a black region with jagged edges. After dimensionality reduction, we get dark
regions with smooth and fuzzy gray borders. Put differently, while the original
data points are classical binary sets with sharp and jagged boundaries, the pro-
jected data points are fuzzy sets with smooth boundaries.1 (Technically speaking
this is not entirely true because the values of the vectors after dimensionality
reduction may fall slightly outside the interval [0, 1], but the notion of a fuzzy set
is still a good conceptual description.) Figure 4 contains two randomly chosen
examples of data points before and after dimensionality reduction.

Fig. 4. Dimensionality reduction

For a given speaker, we can now determine for each Munsell chip which
category has the highest value (after dimensionality reduction). In this way we

1 The idea that the extensions of color categories are best modeled as fuzzy sets has
been argued for on the basis of theoretical considerations by Kay and MacDaniel
(1978).
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can assign a unique category to each chip, and we end up with a partition of the
color space again. The boundaries of the categories are sharp again, but in most
cases not jagged but smooth. As an illustration, the cleaned-up versions of the
partitions from Figure 1 are given in Figure 5.

Fig. 5. Cleaned-up partitions for the two speakers of Central Tarahumara

4 Convexity in the CIELab space

The visualizations discussed so far suggest the generalization that after dimen-
sionality reduction, category extensions are usually contiguous regions in the 2d
Munsell space. This impression becomes even more striking if we study the ex-
tensions of categories in a geometrical representation of the color space with a
psychologically meaningful distance metric. The CIELab space has this property.
It is a 3d space with the dimension L* (for lightness), a* (the green-red axis) and
b* (the yellow-blue axis). The set of perceivable colors forms a three-dimensional
solid with approximately spherical shape. Figuratively speaking, white is at the
north pole, black at the south pole, the rainbow colors form the equator, and the
gray axis cuts through the center of the sphere. The CIELab space has been stan-
dardized by the “Commission Internationale d’Eclairage” such that Euclidean
distances between pairs of colors are monotonically related to their perceived
dissimilarity.

The 320 chromatic Munsell colors cover the surface of the color solid, while
the ten achromatic chips are located at the vertical axis. Visually inspecting
CIELab representations of the (dimensionality-reduced) partitions led to the hy-
pothesis that boundaries between categories are in most cases approximately lin-
ear, and extensions of categories are convex regions. This is in line with the main
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claim of Gärdenfors’ (2000) book “Conceptual Spaces”. Gärdenfors suggests that
meanings can always be represented geometrically, and that “natural categories”
must be convex regions in such a conceptual space. The three-dimensional color
space is one of his key examples.

We tested to what degree this prediction holds for the partitions obtained
via dimensionality reduction. The algorithm we used can be described as follows.
Suppose a partition p1, · · · , pk of the Munsell colors into k categories is given.

1. For each pair of distinct categories pi, pj (with 1 ≤ i, j ≤ k), find a linear
separator in the CIELab space (i.e. a plane) that optimally separates pi from
pj . This means that the set of Munsell chips is partitioned into two sets p̃i/j

and p̃j/i, that are linearly separable, such that the number of items in pi∩pj/i

and in pj ∩ pi/j is minimized.
2. For each category pi, define

p̃i
.
=

⋂

j 6=i

pi/j

As every pi/j is a half-space and thus convex, and the property of convexity is
preserved under set intersection, each p̃i is a convex set (more precisely: the set
of Munsell coordinates within a convex subset of R3).

To perform the linear separation in a first step, I used a soft-margin Sup-
port Vector Machine (SVM). An SVM (Vapnik and Chervonenkis 1974) is an
algorithm that finds a linear separator between two sets of labeled vectors in
an n-dimensional space. An SVM is soft-margin if it tolerates misclassifications
in the training data.2 As SVMs are designed to optimize generalization perfor-
mance rather than misclassification of training data, it is not guaranteed that
the linear separators found in step 1 are really optimal in the described sense.
Therefore the numerical results to be reported below provide only a lower bound
for the degree of success of Gärdenfors’ prediction.

The output of this algorithm is a re-classification of the Munsell chips into
convex sets (that need not be exhaustive). The degree of convexity “conv” of
a partition is defined as the proportion of Munsell chips not re-classified in
this process. If p(c) and p̃(c) are the class indices of chip c before and after
re-classification, and if p̃(c) = 0 if c 6∈

⋃
1≤i≤n p̃i, we can define formally:

conv
.
= |{c|p(c) = p̃(c)}|/330

The mean degree of convexity of the partitions obtained via PCA and dimen-
sionality reduction is 93.9%, and the median is 94.5% (see the first boxplot in
Figure 6). If the above algorithm is applied to the raw partitions rather than
to those obtained via dimensionality reduction, the mean degree of convexity is
77.9%.

2 The main reasons for the popularity of SVMs in statistical learning are that they
are easily adaptable to non-linear classification tasks and that they find separators
that generalize well to unseen data. These features are of lesser importance here. See
(Schölkopf and Smola, 2002) for a comprehensive account.
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Fig. 6. Degrees of convexity (in %) of 1. cleaned-up partitions, 2. raw partitions, and
3. randomized partitions

Since the difference between these values is considerable, one might suspect
the high degree of convexity for the cleaned-up data actually to be an artifact
of the PCA algorithm and not a genuine property of the data. This is not very
plausible, however, because the input for PCA were exclusively categorization
data from the WCS, while the degree of convexity depends on information about
the CILab space. Nevertheless, to test this hypothesis, I applied a random per-
mutation of the category labels for each original partition and applied the same
analysis (PCA, dimensionality reduction, computation of the degree of convex-
ity) to the thus obtained data. The mean degree of convexity for these data is
as low as 65.3% (see the third boxplot in Figure 6). The fact that this value is
so low indicates the high average degree of convexity to be a genuine property
of natural color category systems.

The choice of m = 10 as the number of relevant principal component was
motivated by the fact that only the first ten prinicpal components were easily
interpretable. As this is a subjective criterion, it is important to test to what
degree the results from this section depend on this choice.

Therefore I performed the same analysis with the original data for all values
of m between 1 and 50. The dependency of the mean degree of convexity on
m is displayed in figure 7. It can be seen that the degree of convexity is not
very sensitive to the choice of m. For all values of m ≤ 35, mean convexity is
above 90%. The baseline is the degree of convexity of 77.9% for the raw data
(or, equivalently, for m = 330), which is indicated by the horizontal line.

So I conclude that the data from the WCS provide robust support for Gärdenfors’
thesis.
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Pluralities in Concealed Questions, Interrogative Clauses and Individuals 

Maribel Romero 
University of Konstanz 

 
Concealed question Noun Phrases (NPs) like the capital of Italy in (1) have been analysed as 
contributing their intension --an individual concept-- to the semantic computation, as 
sketched in (2)-(4) (Heim 1979, Romero 2005, Aloni 2008): 

(1) Mary knows / guessed / revealed / forgot the capital of Italy. 
(2) [[the capital of Italy]]  =   λw. ιxe [capital-of-Italy(x,w)]  

(3) [[knowCQ]](x<s,e>)(z)(w) = 1    iff     ∀w”∈Doxz(w) [ x(w”) = x(w) ] 

(4) KnowCQ + INTENSION of the NP: 
[[Mary knows the capital of Italy]] = 
λw. ∀w’∈Doxm(w) [ ιxe[capital-of-Italy(x,w’)]  =  ιxe[capital-of-Italy(x,w)] ] 

However, the individual concept approach encounters problems when we consider concealed 
question NPs with quantifiers: (5). Combining the generalized quantifier's intension with the 
verb does not yield the correct truth conditions (Nathan 2005, Frana to appear). This has lead 
researchers to deviate from the core individual concept approach in different ways 
(Schwagger 2007, Roelofsen and Aloni 2008, Frana to appear). 

(5) a. Mary knows / guessed / revealed / forgot most European capitals. 
 b. Mary knows / guessed / revealed / forgot few / some European capitals 

The present paper proposes a solution to this problem within the invididual concept line. The 
key idea is that, in the same way that adverbials like to some extent and for the most part 
quantify over subquestions of an embedded question (Berman 1991, Lahiri 2002, Beck and 
Sharvit 2002), some and most can quantify over sub-individual concepts of a concealed 
question, as sketched in (6). Furthermore, it will be shown that certain constraints on 
determiner and adverbial quantification over concealed questions are parallel to those on 
determiner and adverbial quantification over (plain) plural individuals. 
(6) The waiter knows / remembers [CQ some / most dishes you ordered]. 
     ≈ 
 The waiter to some extent / for the most part knows / remembers [InterrCP what dishes 

you ordered]. 
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