Tableaus for natural logic

Tableaus for Natural Logic

Reinhard Muskens

Tilburg Center for Logic and Philosophy of Science
r.a.muskens@uvt.nl
http://let.uvt.nl/general/people/rmuskens/

Abstract. In this paper we develop the beginnings of a tableau system
for natural logic, the logic that is present in ordinary language and that
us used in ordinary reasoning. The system is based on certain terms of
the typed lambda calculus that can go proxy for linguistic forms and
which we call Lambda Logical Forms. It is argued that proof-theoretic
methods like the present one should complement the more traditional
model-theoretic methods used in the computational study of natural lan-
guage meaning.

1 Introduction

A standard approach to the semantics of natural language [17] provides language,
or rather fragments of language, with a truth definition by means of translation
into the language of some logic (such as Montague’s IL) that already comes
with one. The truth conditions of a translated sentence will then be identified
with those of its translation. This also induces a relation of entailment on the
translated fragment, for a sentence S can be taken to entail a sentence S’ if and
only if the translation of the former entails that of the latter.

This provides a way to do automated inference on natural language. In or-
der to check whether a given argument stated in ordinary language holds, its
premises and conclusion are translated into logic with the help of some form of
the typed lambda calculus, after which a theorem prover is invoked to do the
actual testing. This procedure is described in [5] with great clarity and precision.

Here we will follow another route and define a tableau system that directly
works on representations that are linguistically relevant. We will also place in
focus tableau rules that are connected with certain properties of operators that
seem important from a linguistic point of view. Our aim will not so much be
to provide a proof system that is complete with respect to the semantics of our
representations, but to provide rules that can be argued to come close to the
rules implemented in human wetware. The purpose of this paper, therefore, is
to contribute to the field of natural logic.*

! Early contributions to natural logic are [14] and [20]. The research line we base
ourselves upon is exemplified in [9, 10,2, 3,19, 8, 4,11, 22,15, 16].

Reinhard Muskens

87



Workshop on Natural Logic

88

2 Lambda Logical Forms

For our purpose it will be of help to have representations of natural language
expressions that are adequate both from a linguistic and from a logical point
of view. At first blush, this may seem problematic, as it may be felt that lin-
guistic and logic require completely different and competing properties from the
representations they use, but in fact the typed lambda calculus provides what
we need, or at least a good approximation to it. In order to obtain a class of
terms with linguistic relevance we will restrict attention to those (simply typed)
lambda terms that are built up from variables and non-logical constants, with
the help of application and lambda abstraction and will delimit this class further
by the restriction that only variables of individual type are abstracted over. The
resulting terms, which will be called Lambda Logical Forms (LLFs), are often
very close to linguistic expressions, as the following examples illustrate.

(1) ((a woman)walk)

((if ((a woman)walk)) ((no man)talk))

(mary (think ((if ((a woman)walk)) ((no man)talk))))

((a woman) (A\z (mary (think ((if (walkz)) ((no man)talk))))))
(few man) Az.(most woman) \y.like zy

® A0 T

The terms in (1) were built up in the usual way, but no logical constants, such as
=,V, d, —, A, V, = and the like, were used in their composition. The next section
will make a connection between some of the non-logical constants used in (1)
and logical ones, but this connection will take us from natural representations
of linguistic expressions to rather artificial ones. Lambda terms containing no
logical constants will therefore continue to have a special status.

Lambda Logical Forms come close to the Logical Forms that are studied in
generative grammar. For example, in [13] trees such as the one in (2a) are found,
strikingly similar to the A-term in (2c).

(2) a. [s[pp every linguist][1[s John[yp offended #,]]]]
b. ((every linguist) (Azj (john(offend z1))))

3 A Natural Logic Tableau System

In this section we will discuss a series of rules for a tableau system directly
based on LLFs. While tableau systems usually only have a handful of rules
(roughly two for each logical operator under consideration), this system will be
an exception. There will be many rules, many of them connected with special
classes of expressions. Defining a system that comes even close to adequately
describing what goes on in ordinary language will be a task far greater than what
can be accomplished in a single paper and we must therefore contend ourselves
with giving examples of rules that seem interesting. Further work should lead to
less incomplete descriptions. Since the rules we consider typically are connected



Tableaus for natural logic

to some algebraic property or other (such as monotonicity or anti-additivity—
see below), it will also be necessary to specify to which class of expressions each
rule applies. Describing exactly, for example, which expressions are monotone
increasing in any given language requires a lot of careful linguistic work and for
the moment we will be satisfied with providing examples (here: some, some N,
every N, many N, and most N).

Familiarity with the method of tableaus will be assumed. Our tableaus will
be based upon a (signed variant of) the KE calculus ([6]).

3.1 Tableau Entries

We will work with signed tableaus in which entries can have one of the following
forms.?

— If Ais an LLF of type (@) and C is a sequence of constants or LLFs of types
&, then TC : A and FC : A are tableau entries;

— If A and B are LLFs of type (@) and @ is a sequence of constants of types
B then Td: AC B and Fad: A C B are tableau entries.

An entry TC : A (FC : A) intuitively states that AC is true (false), while
Td: AC B (Fd: A C B) states that it is true (false) that (AZ.AZ@) C (\Z.AZqd)
(where the 7 are of types &@). For example, T : man C talk states that, as a
matter of contingent fact, in world ¢ all men are talking, while T : sparrow C
bird says that, in all worlds, all sparrows are birds.

3.2 Closure Rules

There will be two cases of outright contradiction in which a branch can be closed.

(3) TC: A Fa:AcCA
FC: A ‘
‘ ><
X

3.3 Rules Deriving from the Format

The format we have chosen also validates some rules. First, we are only interested
in LLFs up to 8n equivalence and lambda conversions can be performed at will.
Second, the XC' : A format (where X is T or F') validates the following rules.

(4) XC: AB XBC: A
R _
XBC: A XC:AB

So we can shift arguments to the front and shift them back again.

2 Types will be relational, as in [18].

Reinhard Muskens

89



Workshop on Natural Logic

90

3.4 The Principle of Bivalence

The KE calculus, which we base ourselves upon, allows for a limited version of
the cut rule, called the Principle of Bivalence (PB). It runs as follows.

(5) /\ provided A and all C are already in the tableau.

The provision here is essential in order to maintain analyticity of the method.
A should be a subterm of a term that already occurs in the tableau and all the
C should also already be present (not as subterms).

Splitting a tableau is a very costly step in view of memory resources and if we
want to devise a system that comes close to human reasoning (at the moment we
are just exploring the logic behind such a system not developing such a system
itself) we should start investigating under what conditions the human reasoner
in fact takes this step. Here we have opted to let PB be our only tableau-splitting
rule, as it is in the calculus KE.

3.5 Rules for C

The following rules seem reasonable for our inclusion statements.

(6) Ta:ACB Ti: ACB Fa:ACB
Ta:BcC TCa: A N

\ ‘ Tha: A

Ta:AccC TCa: B Fba : B

While the first two rules in (6) do not introduce any new material, the second
does. The witnesses b that are introduced here must be fresh to the branch.

3.6 Hyponomy Rule

We will suppose that many basic entailments between words® are given in the
lexicon and are freely available within the tableau system. This leads to the
following rule.

(7) If A C B is lexical knowledge: \

Tableau validity will thus be a notion that is dependent on the set of entailments
that are considered lexical knowledge.

3 In natural language there are entailment relations within many categories [12]. If
A C B is true in all models under consideration, we say that A entails B. For
example, sparrow entails bird and each entails most.



Tableaus for natural logic Reinhard Muskens

3.7 Boolean Rules

We can now give rules for the operators and, or and not, the first two of which
we write between their arguments, much as the rules for A, V and — would be
in a signed variant of the KE calculus. What is different here is that these rules
are given for conjunction, disjunction and complementation in all categories, not
just the category of sentences.

(8) TC : Aand B FC: Aand B FC: Aand B
i TC : A TC : B
TC: A ‘ ‘
TC: B FC:B FC: A
9) FC:Aor B TC :Aor B TC :Aor B
J FC:A FC:B
FC: A ‘ ‘
FC:B TC : B TC :
(10) TC :not A FC :not A
il i
FC: A TC : A
Here is a tableau showing that not (man or woman) entails (not man) and (not
woman) .
(11) Tci: not(man or woman)

Fci: (not man) and (not woman)
Fci : man or woman
Fci : man
Fci : woman

s

Tci : not man Fci:not man
Fci : not woman T'ci : man
T'ci : woman X
X

In order to refute the possibility that some object ¢ and some world 7 satisfy
not(man or woman) but do not satisfy (not man) and (not woman) a tableau
was developed which starts from the counterexample set

{Tci : not(man or woman), Fci: (not man) and (not woman)} .

Since the tableau closes the possibility is indeed refuted.

While and, or and not seem to be operative in all categories, if is sentential.
We formulate its rules as follows. Note that sentences still need a parameter
(here: i) since their type is (s), not just ().

91



Workshop on Natural Logic

92

(12) Ti:if AB Fi:if AB
Ti: A |
‘ Ti: A
T:: B Fi: B

3.8 Rules for Monotonic Operators

The rules we have discussed until now were either completely general or operated
on specific words (constants), but it has been observed that natural reasoning
hinges on properties that attach to certain groups of expressions. Let us write
C; for the relation that obtains between relations M and M’ of the same type
(Fs) if (\E.MTi) C (AZ.M'Zi). A relation A of type ((@s)fs) is called upward
monotone if YXYVi(X C; Y — AX C; AY) (where X and Y are of type (ds)).
Examples of upward monotone expressions (already mentioned above) are some,
some N, every N, many N, most N (where N varies over expressions of type (es)),
but also Mary. Here is a tableau rule for upward monotone (mont) expressions.

—

(13) If A is monf: TCi: AB
Ti:BCB
\

—

TCi: AB’

And here is a dual rule for expressions that are downward monotone, i.e. that
satisfy the property VXYVi(X C; Y — AY C; AX). Examples are no, no N,
every, few, and few N.

—

(14) If A is mon]: TCi: AB
Ti:B' CB

L
TCi: AB’

Using the second of these rules, the first tableau in Table 1 shows, by way of
example, that no bird moved entails no lark flew.?

A central theme of [19] is that monotonicity reasoning is at the hart of tra-
ditional logic. The second tableau in Table 1 shows the validity of the syllogism
known as Disamis.

The crucial step here makes use of the upward monotonicity of some. We
have used a rule to the effect that all essentially is C; (where i is the current
world) which will be introduced below.

3.9 Other Rules Connected to Algebraic Properties

Upward and downward monotonicity are not the only algebraic properties that
seem to play a pivotal role in language. There is a literature starting with [23]

4 We follow the convention, usual in type-logical work, that association in terms is to

the left, i.e. ABC is short for (AB)C (which in its turn is short for ((AB)C)).



Tableaus for natural logic Reinhard Muskens

Ti :no bird moved Ti : some AB
F'i:no lark flew T7:all AC
Ti: flew C moved Fi: some CB
Ti:no bird flew Ti:ACC
Tflew,i:no bird TBi : some A
Fflew,i:no lark TBi : some C
T4 :lark C bird Ti : some CB
Tflew,i:no lark X
X

Table 1. Two Tableaus

singling out anti-additivity, as linguistically important. An operator A is anti-
additive if it is downward monotone and satisfies the additional property that
VXY ((AX NAY) C A(X UY)). Rules for anti-additive operators, examples of
which are no-one and without, but also not, are easily given:

(15) If A is anti-additive: FC:A(Bor B) FC: A(Bor B')
TC : AB TC : AB'
| N
FC: AB’ FC:AB

We can continue in this vein, isolating rules connected to semantic properties
that have been shown to be linguistically important. For example, [7] mentions
splittingness, VXY (A(X UY) C (AX U AY)), and having meet, VXY ((AX N
AY) C A(X NY)), which we can provide with rules as follows.

(16) If A has meet: FC: A(B and B') FC: A(B and B)
TC : AB TC : AB’'
N |
FC : AB’ FC: AB
(17) If A is splitting: TC : A(B or B') TC : A(B or B')
FC: AB FC: AB
N |
TC : AB’ TC : AB

no N and every N have meet, while some N is splitting.

3.10 Getting Rid of Boolean Operators

Many of the rules we have seen thus far allow one to get rid of Boolean op-
erators, even if the operator in question is not the main operator in the LLF
under consideration. Here are a few more. If a Boolean is the main connective
in the functor of a functor-argument expression it is of course always possible
to distribute it over the argument and Booleans can likewise be pulled out of
lambda-abstractions.

93



Workshop on Natural Logic

94

— —

(18) XC:(Aand A)B XC : (A\xz.A and B)

B \ . \
XC:ABand A'B XC : (Mz.A) and (\z.B)

These rules were given for and, but similar rules for or and not are also obviously
correct.

Other rules that help removing Booleans from argument positions are deriv-
able from rules that are already present, as the reader may verify. Here are a
few.

(19) If A is monf: TC : A(B and B') FC:A(Bor B)
N N
TC : AB FC:AB
TC : AB’ FC: AB'
(20) If A is mon]: TC : A(B or B') FC : A(B and B')
N N
TC: AB FC:AB
TC : AB' FC: AB'

It is clear that not all cases are covered, but the rules allow us to get rid of and
and or at least in some cases.

3.11 Rules for Determiners

Let us look at rules for determiners, terms of type ((es)(es)s). It has often been
claimed that determiners in natural language all are conservative, i.e. have the
property VXY (DXY = DX(X NY)) ([1]). Leaving the question whether really
all determiners satisfy this property aside, we can establish that for those which
do we can use the following tableau rule.

(21) If D is conservative: Xi:DA(A and B)

\
Xi:DAB

This again is a rule that removes a Boolean operator from an argument position.
Here is another. If determiners D and D’ are duals (the pair some and every are
prime examples), the following rule can be invoked. (Welet T = F and F =T.)

(22) If D and D’ are duals: Xi: DA(not B)

|
Xi:D'AB

The following rule applies to contradictory determiners, such as some and no.
(23) If D and D’ are contradictories: Xi: DAB

|
Xi:D'AB



Tableaus for natural logic Reinhard Muskens

There must also be rules for the logical determiners every and some. The first of
these determiners is of course closely related to C and we obtain the following.

(24) Xi:every AB

|
Xi:ACB

The second may be given its own rules.

(25) Ti: some AB Fi:some AB Xi:some AB
\ Tci: A \
Thi: A ‘ Xi:some BA
Tbi: B Fci: B

The b in the first rule must again be fresh to the branch. Such taking of witnesses
typically leads to undecidability of the calculus and it would be an interesting
topic of investigation how the linguistic system avoids the ‘bleeding and feeding’
loops that can result from the availability of such rules.

3.12 Further Rules

In a full paper we will add rules for the modal operators may and must, think
and know. We will also consider rules that are connected to comparatives and
other expressions.

4 Conclusion

One way to describe the semantics of ordinary language is by means of transla-
tion into a well-understood logical language. If the logical language comes with
a model theory and a proof theory, the translation will then induce these on
the fragment of language that is translated as well. A disadvantage of this pro-
cedure is that precise translation of expressions, taking heed of all their logical
properties, often is difficult. Whole books have been devoted to the semantics
of a few related words, but while this often was done with good reason and in
some cases has led to enlightening results, describing language word by word
hardly seems a good way to make progress. Tableau systems such as the one
developed here provide an interesting alternative. They interface with the usual
model theory, as developing a tableau can be viewed as a systematic attempt to
find a model refuting the argument, but on the other hand they seem to give us
a better chance in obtaining large coverage systems approximating natural logic.
The format allows us to concentrate on rules that really seem linguistically im-
portant and squares well with using representations that are close to the Logical
Forms in generative syntax.

95



Workshop on Natural Logic

96

References

1.

w N

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23

J.F.A.K. van Benthem. Questions about Quantifiers. Journal of Symbolic Logic,
49:447-478, 1984.

J.F.A. K. van Benthem. Fssays in Logical Semantics. Reidel, Dordrecht, 1986.
J.F.A.K. van Benthem. Language in Action. North-Holland, Amsterdam, 1991.
R. Bernardi. Reasoning with Polarity in Categorial Type Logic. PhD thesis, Utrecht
University, 2002.

Patrick Blackburn and Johan Bos. Representation and Inference for Natural Lan-
guage. A First Course in Computational Semantics. CSLI, 2005.

M. D’Agostino and M. Mondadori. The Taming of the Cut. Classical Refutations
with Analytic Cut. Journal of Logic and Computation, 4(3):285-319, 1994.

Jaap van der Does. Applied Quantifier Logics. PhD thesis, University of Amster-
dam, 1992.

D. Dowty. The Role of Negative Polarity and Concord Marking in Natural Lan-
guage Reasoning. In Mandy Harvey and Lynn Santelmann, editors, Proceedings
from SALT IV, pages 114—144. Cornell University, Ithaca, 1994.

J. van Eijck. Generalized Quantifiers and Traditional Logic. In J. van Benthem
and A. ter Meulen, editors, Generalized Quantifiers in Natural Language. Foris,
Dordrecht, 1985.

J. van Eijck. Natural Logic for Natural Language. In B. ten Cate and H. Zeevat,
editors, TbiLLC 2005, LNAI 4363, pages 216—230. Springer-Verlag, Berlin Heidel-
berg, 2007.

F. Fyodorov, Y. Winter, and N. Francez. Order-Based Inference in Natural Logic.
Logic Journal of the IGPL, 11(4):385-416, 2003.

J. Groenendijk and M. Stokhof. Type-shifting rules and the semantics of interrog-
atives. In G. Chierchia, B. Partee, and R. Turner, editors, Properties, Types and
Meanings, vol. 2: Semantic Issues, pages 21-68. Kluwer, 1989.

I. Heim and A. Kratzer. Semantics in Generative Grammar. Blackwell, Oxford,
1998.

G. Lakoff. Linguistics and Natural Logic. In D. Davidson and G. Harman, editors,
Semantics of Natural Language, pages 545—-665. Reidel, Dordrecht, 1972.

B MacCartney and C. Manning. Natural Logic for Textual Inference. In ACL 2007
Workshop on Textual Entailment and Paraphrasing, 2007.

B MacCartney and C. Manning. An Extended Model of Natural Logic. In H. Bunt,
V. Petukhova, and S. Wubben, editors, Proceedings of the 8th IWCS, pages 140—
156, Tilburg, 2009.

R. Montague. The Proper Treatment of Quantification in Ordinary English. In
J. Hintikka, J. Moravcsik, and P. Suppes, editors, Approaches to Natural Language,
pages 221-242. Reidel, Dordrecht, 1973. Reprinted in [21].

R.A. Muskens. Meaning and Partiality. CSLI, Stanford, 1995.

Victor Sanchez. Studies on Natural Logic and Categorial Grammar. PhD thesis,
University of Amsterdam, 1991.

F. Sommers. The Logic of Natural Language. The Clarendon Press, Oxford, 1982.
R. Thomason, editor. Formal Philosophy, Selected Papers of Richard Montague.
Yale University Press, 1974.

Anna Zamansky, Nissim Francez, and Yoad Winter. A ‘Natural Logic’ Inference
System Using the Lambek Calculus. Journal of Logic, Language and Information,
15:273-295, 2006.

F. Zwarts. Negatief-polaire Uitdrukkingen I. Glot, 6:35-132, 1981.



	Invited Speakers
	Zolta19 an Szabo19 oSpecific, yet opaque
	Workshop on Implicature and Grammar
	Philippe SchlenkerSupplements within a unidimensional semantics
	Workshop on Natural Logic
	Reinhard MuskensTableaus for natural logic
	Camilo Thorne & Diego CalvaneseData complexity of the syllogistic fragments of English






