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Abstract. The syllogistic fragments of English (syllogistic FOEspeass syllo-

gistic reasoning. We want to know how suitable they would $&ent-end lan-

guages for ontology-based data access systems (OBDA&si-einds that have
been proposed to rely on controlled fragments of naturajuage. In particu-
lar, we want to know how well syllogistic FOE-based data ngemaent tasks for
OBDASSs scale to data. This, we argue, can be achieved byistuthe seman-
tic complexity of the syllogistic FOEs and by consideringsb computational
properties that depend on the size of the data alone.
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1 Introduction

A fragment of Englisi{FOE) is any (grammatical) subset of English. Montaguekbac
in the 1970’s [9] showed how to define a compositional, forsahantics for a FOE
by means ofcompositional translations (-) that recursively assign to each English
syntactic constituent a H@eaning representatiofMR), where HO can be conceived
of as the extension of FO with theabstractionA-application,G-normalization and,
eventually, the types of the simply-typedcalculus [9]. Since HO (FO) possesses a
formal semantics, embodied by amterpretation function?, we can, modulor(-),
apply -Z to FOEs. Such formal semantic analysis gives rise to thenatf semantic
complexity proposed by Pratt in [11], viz., the computational projesrof their MRs
(which define fragments of FO) and, a fortiori, the FO reasgrdecision problems
expressibldy such FOEs.

An important family of FOEs are the syllogistic FOEs studigdPratt and Third in
[11]. These FOEs capture common-sense syllogistic reagpwhich was (with Aristo-
tle) the starting point of all research in formal logic. Th#l@gistic FOEs capture also
wide classes of common-sense constraints and, as a resiigin expressiveness
with well-known knowledge representation formalisms sashconceptual modelling
(e.g., ER-diagrams) and ontology (e.g., OWL) languages.

Recently [3, 6, 8] FOEs (in particulat, controlled FOEs,.vfragments devoid of
structural or semantic ambiguity) have been proposed as-&od (natural) languages
for OBDASs. An OBDAS [13,4] is a paifO, D), where© is an ontology (a set of,
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ultimately, FO axioms) an#® is a database (DB), meant to specify partially the knowl-
edge we have of a given domain (DBs are FO structures). Siiglaln OBDASs can
be understood through tlata complexityf data management tasks, i.e., though their
(computational) complexity measured w.r.t. the siz&aflone, which is crucial insofar
as real-world DBs may contain giga or terabytes of data, ifmore [4, 15]. Modulo
7(+), the semantic complexity of font-end fragments for OBDAS&m ampact the per-
formance (the scalability to data) of the back-end data mament tasks and routines.
In this paper we study the suitability of the syllogistic FO&S front-end languages
for OBDASS by considering their scalability to data. To ureiend such scalability we
study the data complexity of syllogistic FOE-based data agament tasks for OB-
DASs. We focus on the two main OBDAS management tasks, naetjaring and
accessing information, which can be each representedrdingty, by a FO decision
problem:(i) knowledge base satisfiability arfii) query evaluation. To infer such data
complexity bounds we adopt as main strateggolution-based saturation decision pro-
ceduredor fragments of FO as outlined by Joyner in [7].

2 The Fragments of English and Tree-Shaped Questions

The syllogistic FOEs are defined incrementally. The idea start with a FOE, called
COP, that covergi) copula ("is”), (i) verb-phrase negation ("is not'(jj) the determin-
ers "some”, "every” and "no”, together with common and propeuns. The fragment
and the translation(-) are defined at the same time, by means of a semantically an-
notated context-free grammar. Standard HO MRs are usededtter, by extending
coverage to a new English construct, viz., transitive véebg., "likes”), ditransitive
verbs (e.g., "gives”), relatives (e.g., "that”) and anaggh@.g., "him”), the other mem-
bers of the family are defined. See Table 1. For the detailéditien of the fragments,
we send the reader to [11]. See Table 2 for their MRs.

The information that we can express/store in such fragnoamtbe queried/accessed
by questions. A relevant interrogative FOE is thattree shaped questiondSQs),
which express some of the most common queries to relaticmtabdses (which in-
tersect withSELECT- PROJECT- JO N SQL queries [1]), while remaining quite nat-
ural for speakers. They are built through query words (évghp”), relatives, transi-
tive verbs, copula, common nouns, the determiner "some” ptlonoun "somebody”,
passives (e.g., "is loved by”) and conjunction ("and”). Sexble 1. For their formal
definition we send the reader to [14]. See Table 2 for their MRs

We intend to understand the computational properties okiegistic FOEsIn
the size of the datalVe consider setS§ of quantified andF of ground sentences. The
pair (S, F) is a KRknowledge bas@KB). Notice that, modula(-), S maps into ("ex-
presses”) and ontolog§ andF into a DBD, and thus a KBS, F) into an OBDAS
(O, D). We study two decision problems. On the one hand, KB satififiafK B-SAT):

— Given: (S, F).
— Check:is 7(S) U 7(F) satisfiable?

And, on the other hand, query answeringgQA):
— Given: (8, F), a questiorQ and (possibly) a constant
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COP Copula, common and proper nouns, negation,
universal, existential quantifiers

COP+Rel COP plus relative pronouns

COP+TV COP plus transitive verbs

COP+TV+DTV COP+TYV plus ditransitive verbs

COP+Rel+TV COP+Rel plus transitive verbs

COP+Rel+TV+DTV COP+Rel+TV plus ditransitive verbs

COP+Rel+TV+RA COP+Rel+TV plus anaphoric pronouns (e.g., he,
him, it, herself) of bounded scope

COP+Rel+TV+GA COP+Rel+TV plus unbounded anaphoric pronouns

COP+Rel+TV+DTV+RA|COP+Rel+TV+DTV plus bounded anaphoric pronouns

TSQs Copula, common and proper nouns, existential
quantifiers, transitive verbs, noun and verb phrase
coordination, relative pronouns, passives, query words

Table 1.Coverage of the FOEs and of TSQs.

— Check:doesr(S) UT(F) E 7(Q){x — c}?

wherer(Q) is a formula of (possibly) free variable By analogy to [15], we define the
data complexityf KB-SAT and KB-QA as their computational complexity whéehis
the only input to the problem. Theze#(F) of F is defined as the number of distinct
proper names (or individual constantsrifiF)) occurring inF.

3 Data Complexity of the FOEs.

Resolution decision procedures.A term¢t is (i) a variablex or a constant or (ii)
an expressiorf(ty,...,t,) wheref is a function symbol and, ..., ¢, terms. In the
latter case, we speak abdunction termsA litteral L is a FO atomP(¢4, . ..,t,). By
aclausewe understand a disjunctidiy VV - -V L, V N4 1 V - -V N, 4, Of positive
and negative litterals. Themptyclause orfalsumis denotedl. By V(¢), V(L) and
V(C) we denote the sets of variables of, resp., terfitteral L and clause”. A term,
litteral, clause or set of clauses is said togreundif it contains no free variables. A
substitutions is a function from variables to terms. It is calledemamingwhen it is a
function from variables to variables. Substitutions caextended to terms and litterals
in the standard way. Anifieris a substitutiow s.t., given two termgsandt’, to = t'o.

A most general unifieis a unifiers s.t. for every other unifies’ there exists a renaming
o’ with o’ = oo’

Thedepthof a term is defined b{i) d(x) := d(c) := 0 and(ii) d(f(t1,...,ts)) :=
max{d(t;) | ¢ € [1,n]} + 1. Thedepthd(L) of a litteral L or d(I") of set of clauses
I is the maximal depth of their terms. Thelative depthof a variablex in a term is
defined by(i) d(z,y) := d(z,¢) := 0 and(ii) d(z, f(t1,...,tn)) := max{d(z,t;) |
i € [1,n]} + 1. Therelative depthd(z, L) of a variabler in a litteral L is its maximal
relative depth among’s terms.
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We consider the so-calleshturation-basediersion (or format) of the resolution
calculus in which we iteratively (monotonically w.ri) generate the set of all possible
clauses derived from' using the rules

ICvL r.cvlir I CvLvkE
res fact

(CvCo (CV L)o

whereo is a most general unifier (df andLL’ in this case), until eithef) _L is derived

or (i) all possible clauses are generated (fixpoint computatiesymally, consider a
functionp(-) over sets of clauses, defined in termsagfamdfact A resolution calculus

is a functionR () s.t. R(I") := I' U p(I"). A derivationd from I" is defined by putting

(i) RY(I) := I'andR*TH(I") := R(RY(I)), for i > 0. Thereafter thesaturationof

I' is defined ag™ := |J{R*(I") | i > 0}. The positive integei is called thedepth

or rank of §. The set(s) of clauses derived at each rank 0 of ¢ is (are) called the
state(s)of 6. Thesizeof ¢ is defined as its total number of states. Resolution is sound
and complete w.r.t. (un)satisfiability: is unsatisfiable iffL € I">°. Moreover, if " is
satisfiable, we can build out @¢f>° a Herbrand model of" [5].

Resolution saturations are not in general computable (tieynot converge finitely).
However, Joyner in [7] showed that finite convergence canchéaed provided that
two conditions are mef(i) that the depth of litterals does not grow beyong a certain
boundd > 0 and(ii) that the length of clauses (the number of disjunctions) aas
grow beyond a bountl> 0. Severatefinementgan be used to ensure the existence of
such bounds and a fortiori finite convergence for severghfrents of FO.

To control depthacceptable ordering¢A-orderings), that is, well-founded and
substitution-invariant partial orders on clause litterahd sets thereof, can be used
(which force resolution on litterals that are maximal wthe ordering). The best known
is the<, ordering defined by

L=y iff d(L)<d(L"),V(L)CV (L") and, forallzeV(L),d(z, L) <d(z, L),
a refinement sound and complete w.r.t. satisfiability. Tar@ditength the splitting rule

ICvL r,cvr

Ir,cvLveE C'o C'o
C'o

can be used (it is sound and complete w.r.t. satisfiabilithiese refinements are guar-
anteed to work the way we want them to in case they are apgiedveringclauses.
A litteral L is said to be covering whenev@) d(L) = 0 or (ii) for every functional
termtin L, V(t) = V(L). If all the litterals of a claus€' are covering, so i§€’. This
property is not, however, closed under resolution or itsesfients: applying them to
covering clauses may result in non-covering clauses. Tweptehis from happening, a
further refinement is requirechonadizatiorf7]. Intuitively, what this does is to reduce
the (un)satisfiability of non-covering clauses, satisfiygome structural properties, into
that of a set of covering clauses. The applicability of tHéemments thus depends on

split

(V(L)NV (L") =0)
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the FO fragments such clauses are drawn from, but, whea#vare applicable, satu-
rations finitely converge [5].

The different systems arising from the different combioasi of rules, orderings
and refinements are summarized by Table 3. Note that sasagikhibit the shape of
a tree (of branching fact®) or of a sequence, depending on whether the calculi make
use or not of the splitting rule.

In particular, theR 5 calculus of Table 3 decides ti&" class of clauses [5]. The
classST is the class where every clauSesatisfies(i) V (C) = V(t), for every func-
tional term¢ in C', and(ii) eitherL has at most one variable B1(L) = V(C), for every
litteral L in C.

Data Complexity of KB-QA and KB-SAT. In this section we study the data complex-
ity of K B-SAT and KB-QA by applying resolution decision procedures to the syllbgis
FOEs. We apply data complexity arguments to sets A of non-ground and ground
clauses. This makes sense, because, madul@nd clausification, FOE constrairfs
map to setst’ of non-ground clauses, FOE factsmap to setsA of ground clauses,
and, in general, KB§S, F) to setsX U A of clauses.

We do as follows. For the tractable FOEs we rely on the "sdjmaraproperty of
resolution saturations [5] (resolution of ground clausas loe delayed to the end). For
the intractable, on the "monadic reducibility” propertysin by Pratt and Third in [11]
that enforces a reduction t§* clauses for the fragments involved; this we combine
with a data complexity of th&+ class (and saturations).

— Separation: L € (X' U A)> iff there exists a sel’ C X s.t.(i) d(X') < d(A),
(i) L e (XU A)* and(iii) X' is finite.

— Monadic reducibility: every setl” of COP+TV+DTV+Rel clausified MRs (or any
fragment thereof). can be polynomially (in the size/§ftransformed into a s€t,
of unary clauses s.1. is satisfiable iffl", is satisfiable.

Lemma 1. Let(C, F, R) be afinite FO signature, whef@is a (finite) set of constants,
F a (finite) set of function symbols aRta (finite) set of predicate symbols. Consider a
clause sef” over such signature and suppose that there exist both a tepthdound

d > 0 and a clause length bourid> 0. Then

1. the number of clauses derivable by the saturation is (trcase)
(a) exponential in the number of constant€nf we use the splitting rule or
(b) polynomial in the number of constantsGotherwise, and

2. the depth of the saturation is (worst-case) polynomiaiithe number of constants
in C.

Proof. Assume that a depth bourtdand a length boundlexist. Letc be the number
of constant symbols itC, v the number of variables iV, f the number of function
symbols inF, p the number of predicate symbolsRy, ar; the maximum arity of the
function symbols, andr, the maximum arity of the predicate symbols. We can define
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split|mon| split
mon
Ri1|Ri12[R1,a|Ri5
<al|R2,1|R2,2|R2,4|Ra2.5

Table 3.Resolution calculi.

the numbette; of terms of depthi > 0 inductively by setting(i) tey := v + ¢, (ii)
te,.1 := f - teh /. Thus, the numbee of terms of depth< d is

d

te< > tei =1 W+ + .+ f (04 ) = pre(c) (1)
=0

which defines a polynomigl..(c). This in its turn yields as upper bound to the number
li of positive and negative literals

i <2 p €% =2 p pro(c)™ = pas(c) @)

thus defining a polynomiah; (c). Finally, fromli we derive an upper bound to the
numbercl of clauses of lengtk< [

cl <1i' =pii(c)' == pa(c) )

which again defines a polynomig}; (¢). The splitting rule splits saturations into two,
yielding a (saturation) tree of worst-case size2P<(¢)| largest (derived) state of size
< pa(c) and that will converge after p.:1(c) iterations. O

Theorem 1. KB-SAT is in NP in data complexity foS™.

Proof. Let ¥ U A be a set ofS* clauses. Consider now7 5-saturation. Calculus
R4 5 decidesS™ and saturations finitely converge. Assume w.l.0.g. fi@ontains no
constants and thal is of depthd(A) = 0 and has: distinct constants (where> 0).
By Lemma 1 we know that the saturation will be tree-shapedanok < p(c), of size
< 2¢(¢) and of maximal state of siz€ p(c).

Outline a non-deterministic algorithm forekKSAT as follows. Start with”’ U A. For
each rank € [0, p(c)] of the saturation, guess/choose a sjate|0, 2. Notice that the
algorithm will make polynomially many choices enFinally, check, in time polyno-
mial in ¢ whetherL is in the resulting state, and, if no, compute, in time potyied in
¢, a Herbrand model af' U A. O

Theorem 2 (KB-SAT). The data complexity faKB-SAT is

1. inLSpacefor COP, COP+TV and COP+TV+DTYV,
2. in NP for COP+Rel, and
3. NP-complete for COP+Rel+TV, COP+Rel+TV and COP+Rel+TV+DTV.
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TSQs Fragment
COP in LSpace[Th 3] in LSpace[Th 2]
COP+TV in PTime [Th 3] in LSpace[Th 2]
COP+TV+DTV |lin coNP in LSpace[Th 3]
COP+Rel coNP-complete [10] [in NP [Th 2]
COP+Rel+TV |[coNP-complete [10] [NP-complete [10]

COP+Rel+DTV |[coNP-complete [Th 3
COP+Rel+DTV+TV/|coNP-complete [Th 3

NP-complete [Th 3]
NP-complete [Th 3]

|| Atomic question |Fragment
COP+Rel+TV+GA j undecidable [Th 3}Jndecidable [11]

COP+Rel+DTV+TV+RA|undecidable [Th 4undecidable [11]
COP+Rel+DTV+TV+GA|undecidable [Th 4undecidable [11]

| TSQs+RA |Fragment
COP+Rel+TV+RAlundecidable [Th 4NP-complete [Th 3]

Table 4. Data complexity of KB-QA and KB-SAT (a.k.a. fragment complexity) for the
syllogistic FOEs and TSQs.

Proof. (Sketch.) For the fragments COP, COP+TV and COP+TV+DTV vasoa as
follows. Let (S, F) be a KB and consider its MRYS) andr(F) (which can be com-
puted in space logarithmic i (F)). Computing their skolemization and clausification
does not affect data complexity, since it is the identity f0). By inspecting the
resulting clauses we can observe that they are coveringg usiordered resolution
prevents clauses from growing beyond a certain depth baurdirthermore, it can
be proven that applyinges andfact, does not increase clause length beyond a certain
bound!, nor does it result in non-covering clauses. ThereforeAttoedered resolution
calculi without splitting from Table 3 decide the satisfidgpiof 7(S) U 7(F). In ad-
dition, we know by the "separation” property that we can 'aepe” data from facts
providedr(S) is satisfiable.

Sketch a decision algorithm for8<SaT as follows. Check whether(S) is sat-
isfiable, i.e., whether. € 7(S)*°, computation that does not depend #1.F) (or
#(7(F))). If the answer is negative, return "no”. If the answer isipies: (i) Compute
the finite modeD of 7(F) (i.e., the Herbrand model defined frariF)). (i) Compute
the FO formulaps := A{C | C clause ofr(S)>°}. Then,

7(8) U T(F) is satisfiable iffD = ¢g,

which outlines a reduction to relational database queryvaring, known to be in
LSpace(actually, in AC) [1]. Membership inLSpacefollows.

Membership inNP for COP+Rel, COP+Rel+TV and COP+Rel+TV+DTV is de-
rived as follows. Consider a KBS, F). Consider now the resulting MRs(S) and
7(F). Clausifying such MRs can be done in time constanttifr(F)). By Pratt and
Third’s "monadic reducibility” property, we know that we rtaeduce, in time poly-
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nomial in #(7(F)) their satisfiability to that of a set(S), U 7(F), of monadic
clauses. By inspection, we can, moreover, observe thatcashkes belong to thg™
class. We can now apply Lemma 1, whence it follows that8aT is in NP. For
COP+Rel+TV+RA we observe that the "monadic reducibilitydperty still holds for
restricted anaphoric pronourj41], wherein we impose pronouns like "him” to co-refer
with their closest antecedent noun phrase within, moreaveingle utterance (and not
beyond).

Finally, NP-hardness for COP+Rel+TV and COP+Rel+TV+DTV can be inférre
by a reduction from th&lP-complete satisfiability problem for 2+2 clauses [12]. A 2+2
clause is a clausk; V Ly V L3 \V L4 containing two positive litterals and two negative
litterals. O

Theorem 3 (KB-QA). If we consider TSQs, then the data complexitKaf-QA is

1. inLSpacefor COP,

2. inPTime for COP+TV,

3. incoNPfor COP+TV+DTV, and

4. coNP-complete for COP+Rel, COP+Rel+TV and COP+Rel+TV+DTV.

Proof. (Sketch.) K8-QA for COP is inLSpacein data complexity, because it can be
shown that its MRs are contained by the description I@dielLite, for which such result
holds [2]. Similarly, it can be shown that COP+T\BKQA reduces to Datalog &-QA.
Furthemore, given a COP+TV KBS, F) and a TSQQ, such reduction proceeds in
space logarithmic igt(F). It thus preserves data complexity. Since Datalag ®a is

in PTime, the result follows.

The coNP upper bound for COP+Rel and COP+Rel+TV follows from toNP-
completeness for data complexity oBKQA for the two-variable fragment of FO [10].
Regarding COP+TV+DTV and COP+Rel+TV+DTV, we observe thaiTSQs can be
expressed quite easily by COP+Rel+TV+DTYV, by extending BDE with grammar
rules accounting for wh- and y/n-questiofi§). COP+Rel+TV+DTV is closed under
negation. We can thus reduces¥QA (again, by a reduction space logarithmic in the
size of the data) taoKB-QA (i.e., the complement of K-SAT) and apply Theorem 2.

Finally, coNP-hardness derives from the fact that we can again reduceatisfi-s
ability of 2+2 clauses to COP+ReloKB-QA (i.e., the complement of K-QA). This
lower bound then propagates to COP+Rel+TV and COP+Rel+TV. O

Theorem 4. KB-QA is undecidable

1. for COP+Rel+TV+RA with TSQs+RA, and
2. for COP+Rel+TV+GA and COP+Rel+TV+DTV+RA with atomic cgii®ns.

Proof. (Sketch.) We can define a reduction from the unbounded tdnogplem, known
to be undecidable, to 8-QA for COP+Rel+TV+RA withindeterminate pronoun®.g.,
"Anybody who does not love somebody, hates him.”) and TSQ@s+#R., TSQs where
anaphoric pronouns have been added to the fragment (e@ps"8me man like some-
body who hates him?”).

For COP+Rel+TV+GA and COP+Rel+TV+DTV+RA the result follswy reduc-
tion from unsatisfiability and by the fact that, as it was show[11], SaT is undecid-
able for these fragments. The reduction requires atomigyéstions (e.g. "Is Socrates
a philosopher?”). O

105



Workshop on Natural Logic

106

4 Conclusions

We have studied the data complexity of Pratt’s syllogist@Hs w.r.t. KB-SAT (viz.,

KB satisfiability) and K&8-QA (viz., answering TSQs over KBs). In so doing, we have
assessed their scalability as front-end languages for GBDM particular w.r.t. data
and constraint declaration and querying, which the aforgimeed decision problems
formalize. Our results show that the data complexity of tba-recursive fragments,
COP, COP+TV and COP+TV+DTYV, are grosso modo, tractable {fper bound for
KB-QA for COP+TV+DTV is not tight and could be improved), and thatadlcomplex-
ity is grosso modo, intractable, when relatives are addedl{pper bound for K-SAT

for COP+Rel is not tight either). Adding anaphoric pronoeitker to the syllogistic
FOEs alone or in combination with TSQs results, in genemaindecidability.
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