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Abstract. The syllogistic fragments of English (syllogistic FOEs) express syllo-
gistic reasoning. We want to know how suitable they would be as front-end lan-
guages for ontology-based data access systems (OBDASs), front-ends that have
been proposed to rely on controlled fragments of natural language. In particu-
lar, we want to know how well syllogistic FOE-based data management tasks for
OBDASs scale to data. This, we argue, can be achieved by studying the seman-
tic complexity of the syllogistic FOEs and by considering those computational
properties that depend on the size of the data alone.
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1 Introduction

A fragment of English(FOE) is any (grammatical) subset of English. Montague, back
in the 1970’s [9] showed how to define a compositional, formalsemantics for a FOE
by means ofcompositional translationsτ(·) that recursively assign to each English
syntactic constituent a HOmeaning representation(MR), where HO can be conceived
of as the extension of FO with theλ-abstraction,λ-application,β-normalization and,
eventually, the types of the simply-typedλ-calculus [9]. Since HO (FO) possesses a
formal semantics, embodied by aninterpretation function·I , we can, moduloτ(·),
apply ·I to FOEs. Such formal semantic analysis gives rise to the notion of semantic
complexity, proposed by Pratt in [11], viz., the computational properties of their MRs
(which define fragments of FO) and, a fortiori, the FO reasoning decision problems
expressibleby such FOEs.

An important family of FOEs are the syllogistic FOEs studiedby Pratt and Third in
[11]. These FOEs capture common-sense syllogistic reasoning, which was (with Aristo-
tle) the starting point of all research in formal logic. The syllogistic FOEs capture also
wide classes of common-sense constraints and, as a result, overlap in expressiveness
with well-known knowledge representation formalisms suchas conceptual modelling
(e.g., ER-diagrams) and ontology (e.g., OWL) languages.

Recently [3, 6, 8] FOEs (in particulat, controlled FOEs, viz., fragments devoid of
structural or semantic ambiguity) have been proposed as front-end (natural) languages
for OBDASs. An OBDAS [13, 4] is a pair(O,D), whereO is an ontology (a set of,
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ultimately, FO axioms) andD is a database (DB), meant to specify partially the knowl-
edge we have of a given domain (DBs are FO structures). Scalability in OBDASs can
be understood through thedata complexityof data management tasks, i.e., though their
(computational) complexity measured w.r.t. the size ofD alone, which is crucial insofar
as real-world DBs may contain giga or terabytes of data, if not more [4, 15]. Modulo
τ(·), the semantic complexity of font-end fragments for OBDASs can impact the per-
formance (the scalability to data) of the back-end data management tasks and routines.

In this paper we study the suitability of the syllogistic FOEs as front-end languages
for OBDASs by considering their scalability to data. To understand such scalability we
study the data complexity of syllogistic FOE-based data management tasks for OB-
DASs. We focus on the two main OBDAS management tasks, namely, declaring and
accessing information, which can be each represented, accordingly, by a FO decision
problem:(i) knowledge base satisfiability and(ii) query evaluation. To infer such data
complexity bounds we adopt as main strategyresolution-based saturation decision pro-
ceduresfor fragments of FO as outlined by Joyner in [7].

2 The Fragments of English and Tree-Shaped Questions

The syllogistic FOEs are defined incrementally. The idea is to start with a FOE, called
COP, that covers:(i) copula (”is”),(ii) verb-phrase negation (”is not”),(ii) the determin-
ers ”some”, ”every” and ”no”, together with common and proper nouns. The fragment
and the translationτ(·) are defined at the same time, by means of a semantically an-
notated context-free grammar. Standard HO MRs are used. Thereafter, by extending
coverage to a new English construct, viz., transitive verbs(e.g., ”likes”), ditransitive
verbs (e.g., ”gives”), relatives (e.g., ”that”) and anaphors (e.g., ”him”), the other mem-
bers of the family are defined. See Table 1. For the detailed definition of the fragments,
we send the reader to [11]. See Table 2 for their MRs.

The information that we can express/store in such fragmentscan be queried/accessed
by questions. A relevant interrogative FOE is that oftree shaped questions(TSQs),
which express some of the most common queries to relational databases (which in-
tersect withSELECT-PROJECT-JOIN SQL queries [1]), while remaining quite nat-
ural for speakers. They are built through query words (e.g.,”who”), relatives, transi-
tive verbs, copula, common nouns, the determiner ”some”, the pronoun ”somebody”,
passives (e.g., ”is loved by”) and conjunction (”and”). SeeTable 1. For their formal
definition we send the reader to [14]. See Table 2 for their MRs.

We intend to understand the computational properties of thesyllogistic FOEsin
the size of the data. We consider setsS of quantified andF of ground sentences. The
pair (S,F) is a KRknowledge base(KB). Notice that, moduloτ(·), S maps into (”ex-
presses”) and ontologyO andF into a DBD, and thus a KB(S,F) into an OBDAS
(O,D). We study two decision problems. On the one hand, KB satisfiability (K B-SAT):

– Given: (S,F).
– Check: is τ(S) ∪ τ(F) satisfiable?

And, on the other hand, query answering (KB-QA):

– Given: (S,F), a questionQ and (possibly) a constantc.
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COP Copula, common and proper nouns, negation,
universal, existential quantifiers

COP+Rel COP plus relative pronouns
COP+TV COP plus transitive verbs
COP+TV+DTV COP+TV plus ditransitive verbs
COP+Rel+TV COP+Rel plus transitive verbs
COP+Rel+TV+DTV COP+Rel+TV plus ditransitive verbs
COP+Rel+TV+RA COP+Rel+TV plus anaphoric pronouns (e.g., he,

him, it, herself) of bounded scope
COP+Rel+TV+GA COP+Rel+TV plus unbounded anaphoric pronouns
COP+Rel+TV+DTV+RA COP+Rel+TV+DTV plus bounded anaphoric pronouns
TSQs Copula, common and proper nouns, existential

quantifiers, transitive verbs, noun and verb phrase
coordination, relative pronouns, passives, query words

Table 1.Coverage of the FOEs and of TSQs.

– Check: doesτ(S) ∪ τ(F) |= τ(Q){x 7→ c}?

whereτ(Q) is a formula of (possibly) free variablex. By analogy to [15], we define the
data complexityof KB-SAT and KB-QA as their computational complexity whenF is
the only input to the problem. Thesize#(F) of F is defined as the number of distinct
proper names (or individual constants inτ(F)) occurring inF .

3 Data Complexity of the FOEs.

Resolution decision procedures.A term t is (i) a variablex or a constantc or (ii)
an expressionf(t1, . . . , tn) wheref is a function symbol andt1, . . . , tn terms. In the
latter case, we speak aboutfunction terms. A litteral L is a FO atomP (t1, . . . , tn). By
aclausewe understand a disjunctionL1 ∨ · · · ∨ Ln ∨Nn+1 ∨ · · · ∨Nn+m of positive
and negative litterals. Theemptyclause orfalsumis denoted⊥. By V (t), V (L) and
V (C) we denote the sets of variables of, resp., termt, litteralL and clauseC. A term,
litteral, clause or set of clauses is said to beground if it contains no free variables. A
substitutionσ is a function from variables to terms. It is called arenamingwhen it is a
function from variables to variables. Substitutions can beextended to terms and litterals
in the standard way. Aunifier is a substitutionσ s.t., given two termst andt′, tσ = t′σ.
A most general unifieris a unifierσ s.t. for every other unifierσ′ there exists a renaming
σ′′ with σ′ = σσ′′.

Thedepthof a term is defined by(i) d(x) := d(c) := 0 and(ii) d(f(t1, . . . , tn)) :=
max{d(ti) | i ∈ [1, n]} + 1. Thedepthd(L) of a litteralL or d(Γ ) of set of clauses
Γ is the maximal depth of their terms. Therelative depthof a variablex in a term is
defined by(i) d(x, y) := d(x, c) := 0 and(ii) d(x, f(t1, . . . , tn)) := max{d(x, ti) |
i ∈ [1, n]}+ 1. Therelative depthd(x, L) of a variablex in a litteralL is its maximal
relative depth amongL’s terms.
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The Data Complexity of the Syllogistic Fragments of English 5

We consider the so-calledsaturation-basedversion (or format) of the resolution
calculus in which we iteratively (monotonically w.r.t.⊆) generate the set of all possible
clauses derived fromΓ using the rules

Γ,C ∨ L Γ,C ∨ L′
res

(C ∨ C′)σ

Γ,C ∨ L ∨ L′
fact

(C ∨ L)σ

whereσ is a most general unifier (ofL andL’ in this case), until either(i) ⊥ is derived
or (ii) all possible clauses are generated (fixpoint computation).Formally, consider a
functionρ(·) over sets of clauses, defined in terms ofresamdfact. A resolution calculus
is a functionR(·) s.t.R(Γ ) := Γ ∪ ρ(Γ ). A derivationδ from Γ is defined by putting
(i) R0(Γ ) := Γ andRi+1(Γ ) := R(Ri(Γ )), for i > 0. Thereafter thesaturationof
Γ is defined asΓ∞ :=

⋃
{Ri(Γ ) | i ≥ 0}. The positive integeri is called thedepth

or rank of δ. The set(s) of clauses derived at each ranki ≥ 0 of δ is (are) called the
state(s)of δ. Thesizeof δ is defined as its total number of states. Resolution is sound
and complete w.r.t. (un)satisfiability:Γ is unsatisfiable iff⊥ ∈ Γ∞. Moreover, ifΓ is
satisfiable, we can build out ofΓ∞ a Herbrand model ofΓ [5].

Resolution saturations are not in general computable (theymay not converge finitely).
However, Joyner in [7] showed that finite convergence can be achieved provided that
two conditions are met:(i) that the depth of litterals does not grow beyong a certain
boundd ≥ 0 and(ii) that the length of clauses (the number of disjunctions) doesnot
grow beyond a boundl ≥ 0. Severalrefinementscan be used to ensure the existence of
such bounds and a fortiori finite convergence for several fragments of FO.

To control depth,acceptable orderings(A-orderings), that is, well-founded and
substitution-invariant partial orders on clause litterals and sets thereof, can be used
(which force resolution on litterals that are maximal w.r.t. the ordering). The best known
is the≺d ordering defined by

L≺dL
′ iff d(L)<d(L′), V (L)⊆V (L′) and, for allx∈V (L), d(x, L)<d(x, L),

a refinement sound and complete w.r.t. satisfiability. To control length the splitting rule

Γ,C ∨ L ∨ L′

Γ,C ∨ L

...

C′σ

Γ,C ∨ L′

...

C′σ
split (V (L)∩V (L′)=∅)

C′σ

can be used (it is sound and complete w.r.t. satisfiability).These refinements are guar-
anteed to work the way we want them to in case they are applied to coveringclauses.
A litteral L is said to be covering whenever(i) d(L) = 0 or (ii) for every functional
term t in L, V (t) = V (L). If all the litterals of a clauseC are covering, so isC. This
property is not, however, closed under resolution or its refinements: applying them to
covering clauses may result in non-covering clauses. To prevent this from happening, a
further refinement is required:monadization[7]. Intuitively, what this does is to reduce
the (un)satisfiability of non-covering clauses, satisfying some structural properties, into
that of a set of covering clauses. The applicability of the refinements thus depends on
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the FO fragments such clauses are drawn from, but, wheneverall are applicable, satu-
rations finitely converge [5].

The different systems arising from the different combinations of rules, orderings
and refinements are summarized by Table 3. Note that saturations exhibit the shape of
a tree (of branching factor2) or of a sequence, depending on whether the calculi make
use or not of the splitting rule.

In particular, theR2,5 calculus of Table 3 decides theS+ class of clauses [5]. The
classS+ is the class where every clauseC satisfies:(i) V (C) = V (t), for every func-
tional termt in C, and(ii) eitherL has at most one variable orV (L) = V (C), for every
litteralL in C.

Data Complexity of KB-QA and KB-SAT. In this section we study the data complex-
ity of K B-SAT and KB-QA by applying resolution decision procedures to the syllogistic
FOEs. We apply data complexity arguments to setsΣ ∪∆ of non-ground and ground
clauses. This makes sense, because, moduloτ(·) and clausification, FOE constraintsS
map to setsΣ of non-ground clauses, FOE factsF map to sets∆ of ground clauses,
and, in general, KBs(S,F) to setsΣ ∪∆ of clauses.

We do as follows. For the tractable FOEs we rely on the ”separation” property of
resolution saturations [5] (resolution of ground clauses can be delayed to the end). For
the intractable, on the ”monadic reducibility” property shown by Pratt and Third in [11]
that enforces a reduction toS+ clauses for the fragments involved; this we combine
with a data complexity of theS+ class (and saturations).

– Separation:⊥ ∈ (Σ ∪∆)∞ iff there exists a setΣ′ ⊆ Σ∞ s.t.(i) d(Σ′) ≤ d(∆),
(ii) ⊥ ∈ (Σ′ ∪∆)∞ and(iii) Σ′ is finite.

– Monadic reducibility: every setΓ of COP+TV+DTV+Rel clausified MRs (or any
fragment thereof). can be polynomially (in the size ofΓ ) transformed into a setΓu

of unary clauses s.t.Γ is satisfiable iffΓu is satisfiable.

Lemma 1. Let(C,F,R) be a finite FO signature, whereC is a (finite) set of constants,
F a (finite) set of function symbols andR a (finite) set of predicate symbols. Consider a
clause setΓ over such signature and suppose that there exist both a term depth bound
d ≥ 0 and a clause length boundk ≥ 0. Then

1. the number of clauses derivable by the saturation is (worst-case)
(a) exponential in the number of constants inC if we use the splitting rule or
(b) polynomial in the number of constants inC otherwise, and

2. the depth of the saturation is (worst-case) polynomial inin the number of constants
in C.

Proof. Assume that a depth boundd and a length boundl exist. Letc be the number
of constant symbols inC, v the number of variables inV, f the number of function
symbols inF, p the number of predicate symbols inR, arf the maximum arity of the
function symbols, andarp the maximum arity of the predicate symbols. We can define
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The Data Complexity of the Syllogistic Fragments of English 7

split mon split
mon

R1,1 R1,2 R1,4 R1,5

≺d R2,1 R2,2 R2,4 R2,5

Table 3.Resolution calculi.

the numbertei of terms of depthi ≥ 0 inductively by setting(i) te0 := v + c, (ii)
tei+1 := f · te

arf
n . Thus, the numberte of terms of depth≤ d is

te≤
d∑

i=0

tei = f0 · (v + c)ar0f + ...+ fd · (v + c)ardf := pte(c) (1)

which defines a polynomialpte(c). This in its turn yields as upper bound to the number
li of positive and negative literals

li ≤ 2 · p · tearp = 2 · p · pte(c)
arp := pli(c) (2)

thus defining a polynomialpli(c). Finally, from li we derive an upper bound to the
numbercl of clauses of length≤ l

cl ≤ li l = pli(c)
l := pcl(c) (3)

which again defines a polynomialpcl(c). The splitting rule splits saturations into two,
yielding a (saturation) tree of worst-case size≤ 2pcl(c), largest (derived) state of size
≤ pcl(c) and that will converge after≤ pcl(c) iterations. ⊓⊔

Theorem 1. KB-SAT is in NP in data complexity forS+.

Proof. Let Σ ∪ ∆ be a set ofS+ clauses. Consider now aR2,5-saturation. Calculus
R2,5 decidesS+ and saturations finitely converge. Assume w.l.o.g. thatΣ contains no
constants and that∆ is of depthd(∆) = 0 and hasc distinct constants (wherec ≥ 0).
By Lemma 1 we know that the saturation will be tree-shaped, ofrank≤ p(c), of size
≤ 2p(c) and of maximal state of size≤ p(c).

Outline a non-deterministic algorithm for KB-SAT as follows. Start withΣ∪∆. For
each ranki ∈ [0, p(c)] of the saturation, guess/choose a statej ∈ [0, 2i]. Notice that the
algorithm will make polynomially many choices onc. Finally, check, in time polyno-
mial in c whether⊥ is in the resulting state, and, if no, compute, in time polynomial in
c, a Herbrand model ofΣ ∪∆. ⊓⊔

Theorem 2 (KB-SAT ). The data complexity forKB-SAT is

1. in LSpacefor COP, COP+TV and COP+TV+DTV,
2. in NP for COP+Rel, and
3. NP-complete for COP+Rel+TV, COP+Rel+TV and COP+Rel+TV+DTV.
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TSQs Fragment
COP in LSpace[Th 3] in LSpace[Th 2]

COP+TV in PTime [Th 3] in LSpace[Th 2]
COP+TV+DTV in coNP in LSpace[Th 3]

COP+Rel coNP-complete [10] in NP [Th 2]
COP+Rel+TV coNP-complete [10] NP-complete [10]

COP+Rel+DTV coNP-complete [Th 3]NP-complete [Th 3]
COP+Rel+DTV+TV coNP-complete [Th 3]NP-complete [Th 3]

Atomic question Fragment
COP+Rel+TV+GA undecidable [Th 4]undecidable [11]

COP+Rel+DTV+TV+RA undecidable [Th 4]undecidable [11]
COP+Rel+DTV+TV+GA undecidable [Th 4]undecidable [11]

TSQs+RA Fragment
COP+Rel+TV+RA undecidable [Th 4]NP-complete [Th 3]

Table 4.Data complexity of KB-QA and KB-SAT (a.k.a. fragment complexity) for the
syllogistic FOEs and TSQs.

Proof. (Sketch.) For the fragments COP, COP+TV and COP+TV+DTV we reason as
follows. Let (S,F) be a KB and consider its MRsτ(S) andτ(F) (which can be com-
puted in space logarithmic in#(F)). Computing their skolemization and clausification
does not affect data complexity, since it is the identity forτ(F). By inspecting the
resulting clauses we can observe that they are covering: using A-ordered resolution
prevents clauses from growing beyond a certain depth boundd. Furthermore, it can
be proven that applyingresandfact, does not increase clause length beyond a certain
boundl, nor does it result in non-covering clauses. Therefore, theA-ordered resolution
calculi without splitting from Table 3 decide the satisfiability of τ(S) ∪ τ(F). In ad-
dition, we know by the ”separation” property that we can ”separate” data from facts
providedτ(S) is satisfiable.

Sketch a decision algorithm for KB-SAT as follows. Check whetherτ(S) is sat-
isfiable, i.e., whether⊥ ∈ τ(S)∞, computation that does not depend on#(F) (or
#(τ(F))). If the answer is negative, return ”no”. If the answer is positive: (i) Compute
the finite modelD of τ(F) (i.e., the Herbrand model defined fromτ(F)). (ii) Compute
the FO formulaϕS :=

∧
{C | C clause ofτ(S)∞}. Then,

τ(S) ∪ τ(F) is satisfiable iffD |= ϕS ,

which outlines a reduction to relational database query answering, known to be in
LSpace(actually, in AC0) [1]. Membership inLSpacefollows.

Membership inNP for COP+Rel, COP+Rel+TV and COP+Rel+TV+DTV is de-
rived as follows. Consider a KB(S,F). Consider now the resulting MRs,τ(S) and
τ(F). Clausifying such MRs can be done in time constant in#(τ(F)). By Pratt and
Third’s ”monadic reducibility” property, we know that we can reduce, in time poly-
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nomial in #(τ(F)) their satisfiability to that of a setτ(S)u ∪ τ(F)u of monadic
clauses. By inspection, we can, moreover, observe that suchclasses belong to theS+

class. We can now apply Lemma 1, whence it follows that KB-SAT is in NP. For
COP+Rel+TV+RA we observe that the ”monadic reducibility” property still holds for
restricted anaphoric pronouns[11], wherein we impose pronouns like ”him” to co-refer
with their closest antecedent noun phrase within, moreover, a single utterance (and not
beyond).

Finally, NP-hardness for COP+Rel+TV and COP+Rel+TV+DTV can be inferred
by a reduction from theNP-complete satisfiability problem for 2+2 clauses [12]. A 2+2
clause is a clauseL1 ∨L2 ∨ L3 ∨ L4 containing two positive litterals and two negative
litterals. ⊓⊔

Theorem 3 (KB-QA). If we consider TSQs, then the data complexity ofKB-QA is

1. in LSpacefor COP,
2. in PTime for COP+TV,
3. in coNPfor COP+TV+DTV, and
4. coNP-complete for COP+Rel, COP+Rel+TV and COP+Rel+TV+DTV.

Proof. (Sketch.) KB-QA for COP is inLSpace in data complexity, because it can be
shown that its MRs are contained by the description logicDL-Lite, for which such result
holds [2]. Similarly, it can be shown that COP+TV KB-QA reduces to Datalog KB-QA.
Furthemore, given a COP+TV KB(S,F) and a TSQQ, such reduction proceeds in
space logarithmic in#(F). It thus preserves data complexity. Since Datalog KB-QA is
in PTime, the result follows.

ThecoNP upper bound for COP+Rel and COP+Rel+TV follows from thecoNP-
completeness for data complexity of KB-QA for the two-variable fragment of FO [10].
Regarding COP+TV+DTV and COP+Rel+TV+DTV, we observe that:(i) TSQs can be
expressed quite easily by COP+Rel+TV+DTV, by extending this FOE with grammar
rules accounting for wh- and y/n-questions.(ii) COP+Rel+TV+DTV is closed under
negation. We can thus reduce KB-QA (again, by a reduction space logarithmic in the
size of the data) toCOKB-QA (i.e., the complement of KB-SAT) and apply Theorem 2.

Finally, coNP-hardness derives from the fact that we can again reduce the satisfi-
ability of 2+2 clauses to COP+RelCOKB-QA (i.e., the complement of KB-QA). This
lower bound then propagates to COP+Rel+TV and COP+Rel+TV. ⊓⊔

Theorem 4. KB-QA is undecidable

1. for COP+Rel+TV+RA with TSQs+RA, and
2. for COP+Rel+TV+GA and COP+Rel+TV+DTV+RA with atomic questions.

Proof. (Sketch.) We can define a reduction from the unbounded tilingproblem, known
to be undecidable, to KB-QA for COP+Rel+TV+RA withindeterminate pronouns(e.g.,
”Anybody who does not love somebody, hates him.”) and TSQs+RA, i.e., TSQs where
anaphoric pronouns have been added to the fragment (e.g., ”Does some man like some-
body who hates him?”).

For COP+Rel+TV+GA and COP+Rel+TV+DTV+RA the result follows by reduc-
tion from unsatisfiability and by the fact that, as it was shown in [11], SAT is undecid-
able for these fragments. The reduction requires atomic y/n-questions (e.g. ”Is Socrates
a philosopher?”). ⊓⊔
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4 Conclusions

We have studied the data complexity of Pratt’s syllogistic FOEs w.r.t. KB-SAT (viz.,
KB satisfiability) and KB-QA (viz., answering TSQs over KBs). In so doing, we have
assessed their scalability as front-end languages for OBDASs, in particular w.r.t. data
and constraint declaration and querying, which the aforementioned decision problems
formalize. Our results show that the data complexity of the non-recursive fragments,
COP, COP+TV and COP+TV+DTV, are grosso modo, tractable (theupper bound for
KB-QA for COP+TV+DTV is not tight and could be improved), and that data complex-
ity is grosso modo, intractable, when relatives are added (the upper bound for KB-SAT

for COP+Rel is not tight either). Adding anaphoric pronounseither to the syllogistic
FOEs alone or in combination with TSQs results, in general, in undecidability.
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