

Vagueness Facilitates Search

Kees van Deemter

University of Aberdeen

k.vdeemter@abdn.ac.uk,

WWW home page: <http://www.cs.abdn.ac.uk/~kvdeemte/>

Abstract. This paper addresses the question why language is vague. A novel answer to this question is proposed, which complements other answers suggested in the literature. It claims that vagueness can facilitate search, particularly in quasi-continuous domains (such as physical size, colour, temperature), given that different speakers are likely to attach subtly different meanings to words (such as “tall”, “blue”, “hot”) defined over such domains.

1 Introduction

Two questions dominate theoretical research on vagueness. The first is of a logical-semantic nature: *What formal models offer the best understanding of vagueness?* Many answers to this question have been proposed (see e.g. Keefe and Smith 1996, Van Rooij 2009), yet it is fair to say that none of these has found general acceptance so far. The second question is of a pragmatic nature and asks *Why is language vague?* This question has been asked forcefully by the economist Barton Lipman, who has shown that some seemingly plausible answers are at odds with classical Game Theory (Lipman 2000, 2006). While a number of tentative answers to this question have been suggested (for an overview, see Van Deemter 2009 and Van Deemter, to appear), Lipman’s is still in many ways an open question, particularly with respect to situations where there is no conflict between the speaker and the hearer (cf., Crawford & Sobel 1982).

Our paper will focus on the second question, but in doing so we hope to obtain some insights into the first question as well. We argue, primarily, that vagueness can facilitate search; additionally we argue that Partial Logic is better placed to explain this than Classical Logic, and that theories that give pride of place to *degrees* (including two-valued theories that include degrees, e.g., Kennedy 2007) are even better placed than Partial Logic to do this. Having said that, we do not claim that facilitation of search is the only rationale for vagueness, or that degrees are necessary for explaining the benefits of vagueness: a non-quantitative model involving an ordinal scale might be equally suitable.

2 Informal outline of the argument

Let’s call a domain *quasi-continuous* if it contains some different objects which resemble each other so much (in the relevant dimension) that they are indistinguishable in practice. Domains do not have to be *mathematically* continuous to

have this property: it suffices for them to contain objects that are similar enough in the relevant dimension (a person of 180.1cm and one of 180.2cm height, for example) that they cannot be told apart given the measurement tools at hand. Examples abound, including the heights of all the people you know, or all the colours that you have seen.

In a quasi-continuous domain, it is difficult for people to align the meanings of the predicates defined over them: there are bound to be people that one speaker calls ‘tall’ that another does not. Arguments to this effect can be found in many different places. Hilbert (1987), for example, who focusses on colour terms, explains how the differences in people’s eyes (e.g., in terms of the density of pigment layers on the lens and the retina) make it unavoidable that one normally sighted person can often distinguish between colour patches where another cannot. Another example is Reiter et al. (2005) on temporal phrases, where it was shown that different speakers use different criteria (e.g., dinner time or the time when the sun sets) to determine the start of the evening, for example. (For discussion, see van Deemter (to appear)). Rohit Parikh has written insightfully about this phenomenon, and we shall use and adapt one of his examples.¹

In Parikh’s original story of Ann and Bob, Ann asks Bob to find her book on topology, adding that “it is blue” (Parikh 2000). Ann and Bob use different concepts of ‘blue’, but Parikh’s point is that if the overlap between them, as compared to their symmetric difference, is sufficiently large then Ann’s utterance may still be very useful, because it may reduce the time that Bob should expect to take before finding the referent. All the same, the mismatch between speaker and hearer does cause Bob’s search for the topology book to take more time than it would otherwise have done. This is particularly true because the book, let’s call it b , may be an element of $\|blue\|_{Ann} - \|blue\|_{Bob}$. In this case, Bob must first search all of $\|blue\|_{Bob}$, then the rest of the books (i.e., the ones he does not consider blue) until he finds b there. His expected search effort in this scenario can be equated to the cardinality of the set $\|blue\|_{Bob}$ plus half that of the complement of this set. In this “unlucky” scenario, Ann’s utterance has led Bob astray: without information about the colour of the book, he could have expected to examine only half the domain. Scenarios of this kind will play an important role in what follows.

In Parikh’s story, Ann and Bob both use a crisp (i.e., non-vague) concept ‘blue’. In what follows, we will argue that it would be advantageous for Bob (and, by extension, for Ann, who wants the book to be found) if Bob was able to rise above thinking in terms of a simple dichotomy between blue and non-blue. Bob might argue, for example, that if the target book is not found among the ones he considers blue, then it is most likely to be one that he considers borderline blue; so after inspecting the books he considers blue, he would be wise to inspect

¹ Differences between speakers are particularly difficult to accommodate in *epistemocist* (i.e., “vagueness as ignorance” approaches to vagueness, which often assume that there is always only one true answer to the question “Is this person tall”). See Van Deemter (to appear, Chapter 7) for discussion.

these borderline cases. In a more dramatic departure from simple dichotomy, Ben might even think of the books as arranged in order of their degree of blueness, and start by searching the ones that are most typically blue, followed by the ones that are just slightly less blue, and so on.

Colours are fairly complex, multi-dimensional things. For simplicity, let us focus on the one-dimensional word tall. This will have the effect that, of any two extensions that the word may be assigned in a given situation, one must always be a subset of the other ($\|tall\|_{Ann} \subseteq \|tall\|_{Bob}$ or $\|tall\|_{Bob} \subseteq \|tall\|_{Ann}$, or both). More crucially, let us abandon the assumption that Ann and Bob must necessarily always think of the words in question as expressing a crisp dichotomy.² The story of the stolen diamond is set in Beijings Forbidden City, long ago:

A diamond has been stolen from the Emperor and, security being tight in the palace, the thief must have been one of the Emperors 1000 eunuchs. A witness sees a suspicious character sneaking away. He tries to catch him but fails, getting fatally injured in the process. The scoundrel escapes. With his last breath, the witness reports “The thief is tall!”, then gives up the ghost. How can the Emperor capitalize on these momentous last words? (Van Deemter, to appear, Chapter 9.)

Suppose the Emperor thinks of tall as a dichotomy, meaning taller than average, for instance. In this case, his men will gather all those eunuchs who are taller than average, perhaps about 500 of them. In the absence of any further clues, he should expect to search an average of as many as 250 tall people (i.e., half of the total number). Matters get worse if the witness has used a more relaxed notion of tall than the Emperor. If this mismatch arises, it is possible that the perpetrator will not be among the eunuchs whom the Emperor considers to be tall. Since the Emperor’s concept “tall” makes no distinctions between people who are not tall, (or between ones that are tall, for that matter) the Emperors men can only search them in arbitrary order. In other words, he first searches 500 eunuchs in vain, then an expected $0.5 * 500 = 250$, totalling 750. Analogous to what we saw in the previous section, the Emperor would have been better off without any description of the thief’s height, in which case he should have expected to search $0.5 * 1000 = 500$ eunuchs. The Emperor could have diminished the likelihood of a false start (i.e., a search strategy based on a notion of tall that excludes the thief) by counting more eunuchs as tall. But in doing so, he would have increased the search times that are necessary to inspect all the eunuchs he considers tall. The only way to avoid the possibility of a false start altogether is by counting *all* eunuchs as tall, which would rob the witness statement of its usefulness.

² Parikh does not discuss this possibility, but he does hint briefly at a closely related one, without analysing it further or discussing its implications: “It may be worth pointing out that probably Bob does have another larger set of Bluish(Bob) books which includes both Blue(Ann) and Blue(Bob). After looking through Blue(Bob), he will most likely look only through the remaining Bluish(Bob) books. (Parikh (1994), p. 533).” See also our section 4, where expressions like “somewhat tall” are discussed.

If the Emperor thinks of tall as vague, however, then he might separate the eunuchs into three rather than two groups: the ones who are definitely tall, the ones who are definitely not tall, and the borderline cases characteristic of vague concepts. For concreteness, assume 100 eunuchs are definitely tall, 500 are definitely not tall, and 400 are doubtful. Surely, the eunuchs in the “definitely tall” category are more likely to be called tall than the ones in the “doubtful” category, while no one in the “definitely not tall” category could be called tall. To put some figures to it, let the chance of finding the thief in the group of 100 be 50% and the chance of finding him in the doubtful group of 400 likewise. Under this scenario, it pays off to search the “definitely tall” eunuchs first, as one may easily verify. In other words, the Emperor benefits from regarding tall as containing borderline cases, and hence vagueness, can facilitate search, because borderline cases allow us to distinguish more finely than would be possible if all our concepts were dichotomies. If your language contains only dichotomous concepts then separating the eunuchs into three different groups does not make sense to you: there are tall eunuchs, not-tall ones, and that's it. But if you understand tall to have borderline cases then you can distinguish between the different people whom you do not consider tall, as well as between the ones you consider tall and all the others.

But if distinguishing between three different categories (tall, not-tall, and borderline tall) is better than distinguishing between just two, then it might be even better to distinguish even more finely. And indeed, the Emperor can do even better than was suggested above, if he uses a *ranking* strategy. Suppose he has the eunuchs arranged according to their heights. First the tallest eunuch is searched, then the tallest but one, and so on, until the diamond is found. This strategy is faster than each of the other ones if we assume that *the taller a person is, the more likely the witness is to have described him as tall*. Under this assumption, the same type of advantage obtains as in the previous case (where only borderline cases were acknowledged), but at a larger scale.

This argument suggests an interesting possible *rationale* for understanding ‘tall’ (or ‘blue’, for that matter) as involving borderline cases or degrees, namely that this allows a more efficient search than would have been possible under a dichotomous understanding of these words. But borderline cases and degrees are the hallmark of vagueness. Consequently, if the argument is correct then we have found a so-far unnoticed *rationale* for vagueness: vagueness can facilitate search.

3 Towards a formal development of the argument

In what follows, it will be useful to employ a couple of abbreviations, some of which are nonstandard. The aim of our enterprise is to show that, given a dichotomous model, it is always possible to define a closely resembling vague model, which has a higher utility than the original crisp one, where utility is formalised by the search effort that a model implies on the part of the hearer.

Let's assume that \mathcal{A} is a standard two-valued model of the word 'tall' as defined on a domain D of people, where some people in D are tall (such people are in the extension $\|tall\|$) and others are not (such people are in the extension $\|\overline{tall}\|_{\mathcal{A}}$). \mathcal{B} , by contrast, has a truth-value gap: according to \mathcal{B} , there are not only tall and not-tall people, but borderline cases as well (such people are in the extension $\|?tall?\|_{\mathcal{B}}$). As before, the search effort implied by a model \mathcal{X} (abbreviated $s(\mathcal{X})$) will be formalised as the expected number of elements of D that the hearer will have to examine, under the assumption that she goes on searching until the intended referent (i.e., the man with the diamond in his pocket) is found. For simplicity, assume that the models \mathcal{A} and \mathcal{B} call exactly the same people tall, so both assign the same extension to $\|tall\|$.³ Furthermore, we assume that all the extensions mentioned above (with the possible exception of $\|tall\|$) are nonempty.

3.1 The advantage of allowing borderline cases

Let us compare the models \mathcal{A} and \mathcal{B} above. Focussing on the witness' reference to the thief (t), there are three different types of situations. (In what follows, $card(X)$ abbreviates "the cardinality of X ").

Type 1. $t \in \|tall\|$. In this case, $s(\mathcal{A})=s(\mathcal{B})$, because the same sets are searched in both cases.

Type 2. $t \in \|?tall?\|_{\mathcal{B}}$. In this case, $s(\mathcal{A})>s(\mathcal{B})$, so \mathcal{B} leads to a lower search effort than \mathcal{A} . In other words, the model with borderline cases (i.e., model \mathcal{B}) incurs an advantage over the one that does not (i.e., \mathcal{A}). The size of the advantage is $1/2(card(\|tall\|_{\mathcal{B}}))$.

Type 3. $t \in \|\overline{tall}\|_{\mathcal{B}}$. In this case, $s(\mathcal{B})>s(\mathcal{A})$, in other words the model with borderline cases incurs a disadvantage. The size of the disadvantage is $1/2(card(\|?tall?\|_{\mathcal{B}}))$.

Proofs of these claims use standard reasoning about probability. Consider Type 2, for example, where the thief t is borderline tall. Given our assumptions, this implies $t \in \|\overline{tall}\|_{\mathcal{A}}$. We can measure the hearer's search effort implied by the model \mathcal{A} as $s(\mathcal{A}) = card(\|tall\|) + 1/2(card(\|\overline{tall}\|_{\mathcal{A}}))$. The search effort implied by \mathcal{B} is $s(\mathcal{B}) = card(\|tall\|) + 1/2(card(\|?tall?\|_{\mathcal{B}}))$, so $s(\mathcal{A})>s(\mathcal{B})$ if $card(\|\overline{tall}\|_{\mathcal{A}}) > card(\|?tall?\|_{\mathcal{B}})$, which is true given that (as we assumed) $\|\overline{tall}\|_{\mathcal{B}} \neq \emptyset$. The size of the advantage is $1/2(card(\|\overline{tall}\|_{\mathcal{A}})) - 1/2(card(\|?tall?\|_{\mathcal{B}}))$, which equals $1/2(card(\|\overline{tall}\|_{\mathcal{B}}))$.

What we really like to know is the expected search effort *a priori*, when it is not known in which of the three Types of situations (listed above) we are. Since borderline cases are advantageous in Type-2 situations but detrimental in Type-3 situations, this depends on the likelihood of these two types. Let "tall(x)" (in double quotes) say that the witness calls x tall, then we can write (p |

³ Other assumptions can have similar consequences. See e.g. section 2, where we assumed that $\|\overline{tall}\|_{\mathcal{A}} = \|\overline{tall}\|_{\mathcal{B}}$.

“tall(x)”) to denote the conditional probability of p given that the witness calls x tall. We can now prove theorems such as the following (still assuming that $\|tall\|_A = \|tall\|_B$):

Theorem 1. If $card(\|?tall?\|_B) \leq card(\|\overline{tall}\|_B)$ then

$$(p(t \in \|?tall?\|_B \mid \text{“tall}(t)\text{”}) > p(t \in \|\overline{tall}\|_B \mid \text{“tall}(t)\text{”})) \Rightarrow s(\mathcal{A}) > s(\mathcal{B})$$

In words: if the number of borderline cases in \mathcal{B} does not surpass the number of people who are clearly not tall in \mathcal{B} then \mathcal{B} has an advantage over \mathcal{A} as long as a person t ’s being called “tall” makes it likelier that t is borderline tall than clearly not tall.

The significance of this Theorem may be seen by focussing on situations where $card(\|tall\|) = card(\|?tall?\|_B) = card(\|\overline{tall}\|_B)$, in which case the antecedent of the Theorem is met. Clearly, in such a situation, the two following things hold:

$$p(t \in \|?tall?\|_B \mid \text{“tall}(t)\text{”}) > p(t \in \|\overline{tall}\|_B \mid \text{“tall}(t)\text{”})$$

$$p(t \in \|\overline{tall}\|_B \mid \text{“tall}(t)\text{”}) > p(t \in \|?tall?\|_B \mid \text{“tall}(t)\text{”}).$$

The Theorem tells us that this implies $s(\mathcal{A}) > s(\mathcal{B})$, in other words, the expected search time implied by the dichotomous model \mathcal{A} is greater than that implied by model \mathcal{B} , which has a truth-value gap. In other words: given a dichotomous model, it is always possible to find a non-dichotomous model (i.e., with borderline cases) which agrees with it on all the positive cases (i.e., which calls exactly the same people tall), and which implies a smaller search effort on the part of the hearer.

3.2 The advantage of degrees and ranking

To develop a formal take on what happens when a concept like “tall” is seen as having *degrees*, let us contemplate a degree model \mathcal{C} , alongside the dichotomous model \mathcal{A} and the three-valued model \mathcal{B} . Without loss of generality we can assume that \mathcal{C} assigns real-valued truth values in $[0, 1]$ to each person in D . As is customary in Fuzzy Logic (Zadeh 1965), among other systems, let \mathcal{C} assign the value 0 to the shortest person and 1 to the tallest, while taller people are assigned values that are not lower than those assigned to shorter ones.

In the present context, the crucial advantage of degree models over 2- or 3-valued ones is that degree models tend to make finer distinctions. 2-valued models (i.e., dichotomous ones) are able to distinguish between two kinds of people (the tall ones and the not-tall ones), and 3-valued models (i.e., ones with a truth-value gap) are able to distinguish between three. Degree models have the capacity to distinguish between many more people – if need be, a mathematical continuum of them. Where this happens, the advantages are analogous to the previous subsection.

Suppose, for example, that the domain contains ten individuals: $a1, a2, b1, b2, c1, c2, d1, d2, e1$, and $e2$, where $a1$ and $a2$ have (approximately) the same

height, so do b_1 and b_2 , and so on. Assume that the Emperor assigns “fuzzy” truth values as follows:

$$\begin{aligned} v(Tall(a1)) &= v(Tall(a2)) = 0.9, \\ v(Tall(b1)) &= v(Tall(b2)) = 0.7, \\ v(Tall(c1)) &= v(Tall(c2)) = 0.5, \\ v(Tall(d1)) &= v(Tall(d2)) = 0.3, \\ v(Tall(e1)) &= v(Tall(e2)) = 0.1. \end{aligned}$$

Recall that the witness described the thief as “tall”. It is not farfetched to think that a_1 and a_2 are more likely targets of this description than b_1 and b_2 , while these two are more likely targets than c_1 and c_2 , and so on. The Emperor should therefore start looking for the diamond in the pockets of the two tallest individuals, then in those of the two next tallest ones, and so on. The idea is the same as in the previous subsection, except with five rather three levels of height: under the assumptions that were made, this search strategy is quicker than the previous two.

This example suggests that the key to the success of this strategy is the ability to *rank* the individuals in terms of their heights, assuming that this corresponds to a ranking of their likelihood of being called “tall”. Whenever this ability results in finer distinctions than 2- or 3-valued models, degree models lead to diminished search effort. In other words:

Theorem 2. Suppose that, for all x and y in the domain D , $v(tall(x)) > v(tall(y))$ implies $p(\text{``tall}(x)\text{''}) > p(\text{``tall}(y)\text{''})$. Suppose, furthermore, that D contains individuals of four or more height levels (i.e., at least four different truth values of the form $v(Tall(x))$). It then follows that $s(\mathcal{C}) < s(\mathcal{B})$.

Proof: by induction on the number n of levels, with $n = 4$ as the base case.

Theorem 2 implies that the expected search time associated with the degree model \mathcal{C} is smaller than that associated with model \mathcal{B} , which has a truth-value gap. So, given a three-valued model, it is always possible to find a degree model that respects the distinctions made by the three-valued model and that implies an even smaller search effort on the part of the hearer.

4 Discussion

We have argued that quasi-continuous domains (such as colours, sizes, etc., where some physically different stimuli are indistinguishable by the naked eye) make it difficult for language users to align the meanings of the predicates defined over them: there are bound to be things that one person calls ‘large’ (or ‘blue’, or ‘warm’) that another person does not. (In fact, even the same person is bound to judge differently on different occasions.) Given such mismatches – which do not exist in standard game-theoretical analyses of vagueness – we have argued that it is to the hearer’s advantage to distinguish shades of meaning in a way that is typical for vague concepts, namely using borderline cases or degrees. I believe

that this argument offers an answer to the *pragmatic* question that we asked in our Introduction which is important while differing notably from the ones offered in the literature so far (see Van Deemter 2009, Van Deemter (to appear) for a survey). To the extent that it supports degree-based models, ranging from Fuzzy Logic to Kennedy-style 2-valued semantics, our analysis also appears to shed light on the *logical-semantic* questions surrounding vagueness.

In an effort to assess the implications of our findings, we discuss some possible objections against our argument.

Objection 1. It might be argued that the benefits that we ascribed to 3-valued and many-valued models can, in fact, also be obtained from 2-valued models. According to this view, the user of a 2-valued model is just as able to make fine distinctions as the user of any other kind of model. One can imagine a semantic and a syntactic version of this argument. The semantic version would argue that an intelligent user of a 2-valued model should be aware that *other* (2-valued) models may exist. She could argue, for example, that taller people are counted as tall by *more* models than less tall people. Clearly then, it pays to start searching amongst those people who are counted as tall by the largest set of models, that is, amongst the tallest people. The *syntactic* version of this argument would say that a person who is “quite” tall is a more likely to be called tall than someone is “somewhat” tall, who is more likely to be called tall than someone who is “a little bit on the tall side perhaps”, and so on; therefore, after unsuccessfully searching all the people who are downright tall, the hearer should direct her attention to the people who are quite tall, somewhat tall, and so on.

I would counter that all objections of this kind presuppose that Bob’s understanding of “large” goes beyond a simple dichotomous model. A language user who reasons as in the semantic version of this objection, for instance, knows that “tall” can have many different thresholds (corresponding with the different models). Where does this leave her own understanding of the word “tall”? Presumably this is just one among many. This language user’s understanding of “tall” goes beyond a simple dichotomous model with one threshold: she understands that it’s part of the meaning of the word that it allows different thresholds. Essentially, this amounts to understanding the word as vague. The counterargument against the syntactic version of the objection is analogous: going beyond what the witness said, by exploring the extension of qualifications like “somewhat tall”, does not make sense unless one is aware that the word “tall” is used differently by different people. Once again, if the Emperor followed this strategy, we would be justified in ascribing to him an understanding of “tall” as a vague concept.

Objection 2. One might question the behaviour of the witness. Why, after all, did he keep us guessing, by using a vague concept? Why didn’t he tell us directly what he saw, saying “the thief is 185cm tall”, or something precise like that? – I believe this objection to rest on a misunderstanding. Perhaps the alternative utterance, “the thief is 185cm tall” would have been more helpful, but it is most

naturally understood as vague too. Surely, an utterance of this kind would cover a person who is 184.3cm, for instance. At what height exactly the assessment starts being false would be difficult to say. Its meaning is perhaps best captured by a Gaussian function that asserts that 185cm is the most likely height, with other heights becoming less and less likely as they are further removed from 185cm. If such a vague estimate of the thief's height comes more naturally to human speakers than a precise assessment (e.g., "the thief's height is 185cm plus or minus 2cm") then Litman's question can be repeated: why is this the case? Why, in other words, do people's height estimates tend to be vague? This new question can be answered in an exactly analogous way as the question on which we focussed in this paper, by pointing out that a crisp concept like "height = 185cm plus or minus 2cm" suffers from the same lack of flexibility as Ann and Bob's crisp notions of blue, in Parikh's story. Like before, vagueness allows speakers to deal flexibly with the differences among each other.

Objection 3. It can be argued that a 3-valued model such as \mathcal{A} falls short of making "tall" a vague concept, given that its boundaries (i.e., between $\|tall\|$, $\|?tall?\|$, and $\|\overline{tall}\|$) are crisp instead of vague. One might even go further and argue that the same is true for the many-valued models discussed in section 3.2, since these, too, assign definite truth values to each statement of the form "Tall(x)". I would counter that, if these models are seen as failing to model genuine (i.e., higher-order) vagueness, then it is difficult to see what models *do* model genuine vagueness. Certainly very few of the models on the theoretical market (see e.g. Keefe and Smith 1997) go further than many-valued models in acknowledging vagueness. Essentially, in this paper, I have taken the pragmatic question about vagueness to be "Why does language not make do with simple dichotomous concepts?"

Objection 4. Litman (2006) proves a game-theoretical theorem (framed within a standard model as proposed in Crawford and Sobel 1982) stating that, given a vague predicate P , there must always exist a non-vague predicate P' that has higher utility than P . It might be thought that this contradicts the main claim of the present paper, but this is not the case. To prove his theorem, Lipman makes various assumptions which our analysis does not share. One of these assumptions is that a vague predicate is a *probability distribution* over functions that assign messages to heights. This is known as a mixed strategy, as opposed to a pure strategy, which is just a function from heights to messages. We have seen in our discussion of Objection 3 that we have adopted a different attitude towards vagueness, without probability distributions. A second, and even more crucial assumption on which Lipman's theorem rests is that there are no mismatches between speaker and hearer. In particular, when a pure strategy is adopted by the speaker, he assumes that the hearer knows what this strategy is. Our own investigations, by contrast, use a very different assumption, namely that mismatches between speaker's and hearer's understanding of words like 'tall' are unavoidable.

5 References

Aragonès & Neeman 2000. E.Aragonès and Z.Neeman. Strategic ambiguity in electoral competition. *J. of Theoretical Politics* 12, pp.183-204.

Crawford and Sobel 1982. V.Crawford and J.Sobel. Strategic information transmission. *Econometrica* 50, pp. 1431-1451.

Hilbert 1987. D.R.Hilbert. Color and Color Perception: A Study in Anthropocentric Realism. CSLI Lecture Notes 9. Stanford, Calif.: CSLI Publications.

Keefe and Smith 1997. R.Keefe and P.Smith. *Vagueness: a Reader*. MIT Press, Cambridge Mass. and London.

Kennedy 2007. C.Kennedy. Vagueness and Grammar: The Semantics of Relative and Absolute Gradable Adjectives. *Linguistics and Philosophy* 30 (1).

Lipman 2000. B.Lipman. Economics and Language. In the “Comments” section of Rubinstein (2000).

Lipman 2006. B.Lipman. Why is language vague? Working paper, Dec. 2006, Dept. of Economics, Boston University.

Parikh 1994. R.Parikh. Vagueness and Utility: the semantics of common nouns. *Ling. and Phil.* 17: pp.521-535.

Reiter et al. 2005. E.Reiter, J.Sripada, J.Hunter, J.Yu, and I.Davy. Choosing words in computer-generated weather forecasts. *Artificial Intelligence* 167, pp.137-96.

Van Deemter 2009. K. van Deemter. Utility and Language Generation: The Case of Vagueness. *Journal of Philosophical Logic* 38 (6), pp.607-632.

Van Deemter (to appear). K. van Deemter. *Not Exactly: in Praise of Vagueness*. To appear with Oxford University Press, Jan. 2010. Web site associated with the book: <http://www.csd.abdn.ac.uk/~kvdeemte/NotExactly>.

Van Rooij (to appear). R. van Rooij. Vagueness and Linguistics. To appear in *Handbook of Vagueness*.

Zadeh 1965. L.Zadeh. Fuzzy Sets. *Information and Control* 8 (3): 338-53.