QUANTITY IMPLICATURES IN EXTENDED LOGIC
PROGRAMMING

GERBEN DE VRIES

Human-Computer Studies Lab, Informatics Institute
University of Amsterdam
gkdvries@science.uva.nl

This paper describes a formalization of quantity implicatures using extended logic
programming. In this approach an implicature example is translated into a logic
program and from the WFSX semantics of this program quantity implicatures are
derived. This formalization provides the insight that scalar implicatures are compu-
tationally more complex than exhaustivity implicatures. Furthermore, the approach
has a close connection to one using circumscription as in van Rooij and Schulz 2004.

1. Introduction
Traditionally the formal study of Gricean quantity implicatures such as:

(1) Q: “Who is coming to the party?”
A: “John or Mary is coming.”
Imp: John or Mary aren’t coming both (a). No one (relevant) besides John or
Mary is coming (b).

is done in a model-theoretic fashion. In van Lambalgen and Hamm 2004 the authors
argue that such methods are inadequate if one wants to bestow any cognitive rele-
vance to formal accounts. In cognitive science, humans are regarded as information
processing, ie. computational, machines. Thus, in order for formal approaches to
make cognitive sense, they must be computational in nature. In their study of tense
and aspect of verbs Van Lambalgen and Hamm create such a computational approach
by making use of the formalism &fogic Programming

The above example shows two types of implicatures. The first one, from ‘or’ to
‘not and’, is one of the standard incarnations dafcalar implicature (Horn 1972).

The second type does not have a standard label, we shall dulexhaustivityim-
plicature, after the exhaustivity function in Groenendijk and Stokhof 1984.

In the following we will apply the formalism of extended logic programming to
quantity implicatures and show a difference in computational complexity between
scalar and exhaustivity implicatures. We will also see how it is related to a circum-
scription based approach. Section 2 begins with introducing extended logic program-
ming, which is applied to implicatures.6 n section 3. We will discuss the results of
this approach in section 4 and end with a brief conclusion.



Gerben de Vries

2. Extended Logic Programming

We will use a special form of logic programming calldgiktended Logic Program-
ming An extended logic prograrl is a finite set ofrulesthat have the following
form:

H « Bi,...,B,,notB,y1,...,n0t B, (0<n<m)

H, By,...,B,, are objective literals, meaning that they are either an atoaon its
explicit negation—A®. The set of all objective literals of a prografhis called its
Herbrand base, denoted B§(IT). The symbol.ot stands for default negation, hence
not L is called a default literal. Amterpretationof a progranil is a setl’ U not F?
such thafl" and F' are disjoint subsets & (11I).

Ordinarily, one works with logic programs using their top-down procedural se-
mantics. However, we will only consider declarative bottom-up semantics. Such
semantics define what the valid models of a progtamre. For this paper we use
the Well-Founded Semantics with eXplicit NegatidFSX) (Alferes and Pereira
1996). A WFSX modelM of a logic progranil is an interpretation ofI that is a
fixed-point of the® operator, which we will not define further. Such a modélis
called aPartial Stable Mode{PSM). These PSMs can be organized into a downward
complete semi-lattice with a unique minimal element called¥ed-Founded Model
(WFM).

3. Application to Implicatures

Before giving the approach, let us get some preliminaries out of the way. First of

all, this is a global approach to implicatures, we assume some form of semantical
representation, ie. a formula, and start from there. Furthermore, though we look at
scalar implicatures, there will be no use of Horn-scales as such. Finally, implicatures
are always considered in the context of an (overt) question to avoid at least some
contextual issues.

3.1. Translation to a Logic Program

In a typical implicature example there are three formal elements: a question pred-
icate, an answer formula and a domain of individuals. Take the example from the
introduction, there we haveme(z) as the question predicat@yme(j) V come(m)
as the answer formula and we takgm, b} as a domain of individuals (addirigas
other “relevant” people). A full definition of the function to translate this into a logic
program is given in de Vries 2007, we will skip that here.

Implicatures are non-monotonic inferences. A motivation to use logic program-
ming is its ability to deal with non-monotonicity elegantly, via the default negation

62
1The use of this explicit negation is why this version is caktendedogic programming.
2not {L1, ..., Ly} denotes the sdtnot L1,...,not Ly}.



Quantity Implicatures in Extended Logic Programming

not. In this approach, we apply non-monotonic reasoning to the question predicate,
which we do by introducing default rulefor every individual:

—come(j) <« not come())
—come(m) <« not come(m)
—come(b) <« not come(b)

Intuitively these rules say that we can conclude the fact that a person will not come,
if we cannot derive (default negation) the fact that that person will come. We assume
to have all knowledge, ie. a closed world, about whether people are coming or not.

The general approach to translate the answer formula is to transform it into con-
junctive normal form (CNF) and then generate rules from this form. For every dis-
junction in this CNF we do the following: for every literal in the disjunction we
introduce a rule with that literal as its head and the rest of the literals negated in the
body. In this examplegome(j) V come(m) is already in conjunctive normal form.
Thus, we get the following rules, which we combine with the above rules to complete
the progranil,: 3

come(j) <+ —come(m)
come(m) <« —come(j)

3.2. Application of WFSX

To derive implicatures we look at the well-founded model (WFM) and the partial
stable models (PSMs) of the above progrBm Both are given in the following
semi-lattice C' stands forcome):

{=C(j), not C(j), {C (), not =C(j),
C(m), not ~C(m), -C(m), not C(m),
=C(b), not C'(b)} =C(b), not C(b)}

‘\/

{=C(b), not C(b)}
The bottom element is the WFM. The WFM is enough to derive the second implica-
ture (1b): “No one besides John or Mary is coming.” After all, Bill is not coming and
this would be the case for every other extra individual in the domain. For the first
implicature (1a) we must look at the maximal elements in the semi-lattice, making it
somewhat more complicated. In this case, these are the two PSMs at the top. In both
models Mary and John don’t come both, thus we conclude this as an implicature.

3.3. Quantifiers

To show the generality of the method in the previous section we will work out a more

complex example. Suppose the answer in example 1 was different:
63
3Notice that a simple binary disjunction generates two rules, because the arrow in logic programming is

not contrapositive.




Gerben de Vries

(2) A: “Some boys are coming to the party.”
Imp: Not all boys (a) and no girls (b) are coming to the party.

The answer formula isdz(boy(z) A come(x))*, which contains an existential quan-
tifier. If we have a finite domain of individuals, as is often the case, then such a
quantifier can be translated into a large disjunction (or conjunction in the case of
the universal quantifier) in which every disjunct is an instance of the original for-
mula with the quantifier variable replaced by an individual from the domain. For
this example, using the domaiti, m, b}, we get:(boy(j) A come(4)) V (boy(m) A
come(m)) V (boy(b) A come(b)). The conjunctive normal form of this formula can
be translated to a set of rules (omitted here due to spatial reasons). Let us call this
set of ruledI,.

The use of quantifiers inevitably introduces the use of other predicates than the
question. In this example we have the,-predicate. This predicate does not require
a non-monotonic interpretation (like the question predicate). It seems most intuitive
to explicitly state the extension &by, since the sex of an individual is usually some-
thing static. Thus, we add the background knowledgey (j), ~boy(m), boy(b)}
to II,. See de Vries 2007 on how to deal with predicates that don't have a fixed
extension. For the question we add the same default rules as in examplé;1 to
since it has not changed.

The WFSX semantics dfl, is given by the following semi-lattice{ for come
and B for boy):

{C(), not ~C (), {-C(j), not C(),
=C(b), not C(b), (b),not -C(b),
-C(m), not C(m), -C(m), not C(m),
B(j), not ~B(j), B(j), not ~B(j),
B(b), not ~B(b), B(b), not ~B(b),
—B(m), not B(m)} —B(m), not B(m)}

~N 7

{=C(m), not C(m),
B(j), not ~B(j),
B(b), not ~B(b),
—B(m), not B(m)}
Again, the exhaustivity implicature (2b): “No girls are coming to the party” is deriv-
able from the WFM, since all the girls in our domain, ie. Mary, are not coming. For
the scalar implicature (2b) we look at the maximal elements. In both, there is only
one boy coming, which means that we can derive: “Not all boys are coming to the
party”.
4Arguably, ‘some’ means ‘at least two’, which better captures the plurality of ‘boys’. However, since

we derive the same implicatures, a translation with two existential quantifiers would only unnecessarily
complicate matters.




Quantity Implicatures in Extended Logic Programming

4. Discussion

There are a number of interesting things to say about the approach above: its compu-
tational complexity, the connection with circumscription and the possibility to deal
with epistemically weaker implicatures.

4.1. Computational Complexity

In both examples the exhaustivity implicature is derivable from the well-founded
model (WFM) and the scalar implicature requires the maximal partial stable models
(PSMs). This is interesting, because the WFM is efficiently computable in polyno-
mial time. However, to get the maximal PSMs we need to compute all of the PSMs,
which at the moment requires super-polynomial time, ie. we cannot do it efficiently.

Because of this difference in computational complexity we conclude that there is
a complexity difference between exhaustivity implicatures and scalar implicatures,
at least for these examples. In fact, the phenomenon generalizes very well over
different types of examples (de Vries 2007). Thus, we have an interesting direction
for further research, both in the formal domain as well as in psychology.

In psycholinguistics there is a debate whether scalar implicatures are computed
by default (Levinson 2000) or are context dependent (Carston 1998). Defaultists ar-
gue that the cancellation of scalars requires extra computational effort, while context
dependents argue the opposite: the computation of the implicature itself is costly.
The approach in this paper favors the latter position, since we found that scalars
are computationally complex and furthermore, to work with a logic program in a
traditional, top-down sense one only needs the cheaper WFM.

4.2. Connection with Circumscription

The method of this paper has a close connection to circumscription. The translation
from example to logic program is similar to the work of Wakaki and Satoh 1997.
Furthermore, under some, not trivial, but, non-critical, assumptions it is proven in
de Vries 2007 that there is a one-to-one correspondence between the maximal ele-
ments in the semi-lattice of PSRIsf a progranil based on answer formutaand
question predicaté® and the models of the circumscription @fwith respect ta).

This is exactly the circumscription approach described in van Rooij and Schulz 2004.
However, their final method is a two step approach which allows for weak and strong
epistemic interpretations and differs from purely applying circumscription.

4.3. Epistemic Strength

One could say that the derivation of the scalar implicature, computing all the PSMs
and then taking the maximal elements, looks somewhat contrived. Actually, how-
ever, this two step process is a good thing. For instance, when it comes to impli-

65
5Technically this is proven for answer-sets, however the answer-sets of a program correspond one-to-one
to the maximal elements, see Alferes and Pereira 1996.



Gerben de Vries

catures under negation, one often feels that an epistemically weaker implicature is
required. Such an epistemically weaker interpretation can be: looking at all the

PSMs, instead of considering just the maximal elements (which would be the strong
interpretation). This idea is different from van Rooij and Schulz 2004, see de Vries

2007 for more.

5. Conclusion

The formalism of extended logic programming can deal nicely with quantity impli-
catures. The approach shows that there is a difference in computational complexity
between exhaustivity and scalar implicatures, the latter being more complex.

Acknowledgements

| thank Robert van Rooij for proofreading this paper and supervising my master’s
thesis on which it is based.

Bibliography

Alferes, J. J. and Pereira, L. M.: 1996easoning with logic programmingol.
1111, Springer-Verlag Inc., New York, NY, USA

Carston, R.: 1998, Informativeness, relevance and scalar implicature, in R. Carston
and S. Uchida (eds.Relevance Theory: Applications and Implicatiopp 179—
236, John Benjamins, Amsterdam

de Vries, G.: 2007, Formalizing implicatures using extended logic programming,
Master’s thesisUniversity of Amsterdam

Groenendijk, J. and Stokhof, M.: 1984&tudies in the Semantics of Questions and
the Pragmatics of Answer®h.D. thesis, University of Amsterdam

Horn, L.: 1972,0n the Semantic Properties of Logical Operators in Engligh.D.
thesis, University of California

Levinson, S.: 2000Presumptive MeaningMIT Press, Cambridge

van Lambalgen, M. and Hamm, F.: 200zhe Proper Treatment of EveniBlackwell

van Rooij, R. and Schulz, K.: 2004, Exhaustive interpretation of complex sentences,
Journal of Logic, Language and Informatidi3(4), 491-519

Wakaki, T. and Satoh, K.: 1997, Compiling prioritized circumscription into extended
logic programs, inJCAI (1), pp 182—-189

66



	main-program.pdf
	de-vries.pdf


