
GRAMMATICAL INFERENCE BY SPECIALIZATION AS A
STATE SPLITTING STRATEGY

ISABELLE TELLIER

LIFL-Inria
university of Lille

isabelle.tellier@univ-lille3.fr

We exhibit connexions beteween two already known learning algorithms developped
in different backgrounds. This allows to show that learning classical (or AB) catego-
rial grammars by specialization can be identified with a “state splitting” strategy, in a
search space made of extended automata. It also leads to a new interpretation of why
it is possible to learn categorial grammars from semantically typed (in Montague’s
sense) examples.

In recent papers (Tellier 2005; Tellier 2006), it was shown that classical (or AB)
categorial grammars (CGs in the following) could easily be represented by extended
automata called recursive automata (RA). This translation allowed to exhibit con-
nexions between two previously distinct approaches of grammar learning from pos-
itive examples: the one used in the “BP algorithm” to learn subclasses of CGs
(Buszkowski and Penn 1990; Kanazawa 1996; Kanazawa 1998) and the one used to
learn regular grammars represented by finite state automata (Angluin 1982; Dupont
et al. 1994). In particular, the “state merging” operator used in automata learning
was shown to be nothing but a special case of the “unification of variables” operator
used in the BP algorithm.

The previous learning algorithms all belung to the family of generalization strate-
gies. A generalization strategy applies as follows: the initial hypothesis is a “least
general grammar” representing the available examples. Then, an operator is used
to generalize this hypothesis until it belongs to the target class. But in symbolic
machine learning in general, and in grammatical inference in particular, there also
exists a lesser known family of specialization strategies. In such strategies, the initial
hypothesis is the whole target class of grammars. Each example is considered as a
constraint which restricts this space, until the space is reduced to a single grammar.

1. Introduction

The aim of this paper is to show that the translation of CGs into RA, which has
helped to better understand the family of generalization strategies, can also help to
better understand the family of specialization strategies. As a matter of fact, as it was

223



Isabelle Tellier

the case for generalization strategies, specialization approaches have been proposed
independantly in two distinct backgrounds: to learn CGs in the one hand, and to
learn regular grammars represented by finite state automata in the other hand.

To reach this aim, we first need to briefly recall in section 2. how to transform a
CG into a recursive automaton. For sake of simplicity, we restrict ourselves in most
of this article to unidirectional CGs, but the definitions can be extended to plain
CGs. In section 3., we first present the specialization strategy described in (Moreau
2004), allowing to learn rigid CGs from positive examples. We then explain how it
relates to another specialization strategy, which targets regular languages represented
by finite state automata (Fredouille and Miclet 2000). As expected, we show that
Moreau’s algorithm can be interpreted as a “state splitting” strategy applying on RA.
Finaly, the whole picture is completed in section 4. by a new interpretation of yet
another already known algorithm allowing to learn CGs from semantically typed
(in Montague’s sense) examples (Dudau-Sofronie et al. 2001). It appears to be an
efficiently controled specialization approach.

2. From categorial grammars to recursive automata

2.1. Basic definitions of categorial grammars

Definition 1 (unidirectional classical categorial grammars) Let B be an enumer-
able set of basic categories containing the axiom S ∈ B. Cat(B) is the smallest
set such that B ⊆ Cat(B) and for any A, B ∈ Cat(B), A/B ∈ Cat(B) (for bidi-
rectional CGs, we also have B\A ∈ Cat(B)). For every finite vocabulary Σ, a
unidirectional categorial grammar G is a finite relation over Σ×Cat(B). We note
〈w, C〉 ∈ G the assignment of the category C ∈ Cat(B) to the word w ∈ Σ. In
classical (or AB) unidirectional categorial grammars (UCGs in the following) the
only syntactic rule, called Forward Application and noted FA is: ∀A, B ∈ Cat(B),
A/B B → A. The language of G is: L(G)={w = v1 . . . vn ∈ Σ+ | ∀i ∈

{1, . . . , n}, ∃Ai ∈ Cat(B) such that 〈vi, Ai〉 ∈ G and A1 . . . An →∗ S}, where
→∗ is the reflexive and transitive closure of the relation →.

Let for example, B = {S, CN, IV } (where CN stands for “common noun” and IV
for “intransitive verbs”), Σ = {John, runs, a, man} and G = {〈John, S/IV 〉,
〈runs, IV 〉, 〈a, (S/IV )/CN〉, 〈man, CN〉}. This over-simple UCG only recog-
nizes the sentences ”John runs” and ”a man runs”.

2.2. Recursive automata and their language

Definition 2 (recursive automaton) A recursive automaton R is a 5-tuple R =
〈Q, Σ, γ, q0, F 〉 such that Q is the finite set of states of R, Σ is its finite vocabulary,
q0 ∈ Q its (unique) initial state and F ∈ Q its (unique) final state. γ is the transition
function of R, defined from Q × (Σ ∪ Q) to 2Q.

224



Grammatical inference by specialization as a state splitting strategy

We restrict ourselves to recursive automata (RA in the following) with unique
initial and final states, but it is not a crucial choice The only important difference
between this definition and the classical definition of finite state automata is that in
a RA, it is possible to label a transition either by an element of Σ or by an element
of Q. To use a transition labeled by a state q ∈ Q, you need to generate a string
belonging to the language LR(q) of this state q, i.e. a string corresponding to a path
starting at the state q and reaching the final state F . The general definition of the set
{LR(q)|q ∈ Q} is thus recursive: when it exists, it is a smallest fix-point. In fact,
RA are a special case of Recursive Transition Networks (Woods 1970).

Definition 3 (language of a RA) We define the set of languages LR(q), for every
q ∈ Q as the smallest set satisfying: (i) LR(F ) = ε; (ii) if there exists a transition
labeled by a ∈ Σ between q and q′, i.e. q′ ∈ γ(q, a) then: a.LR(q′) ⊆ LR(q); (iii)
if there exists a transition labeled by r ∈ Q between q and q′, i.e. q′ ∈ γ(q, r) then:
LR(r).LR(q′) ⊆ LR(q). Finaly, the language of R is: L(R) = LR(q0).

2.3. From unidirectional CGs to RA

Every UCG can be transformed into a strongly equivalent RA, i.e. a RA generating
the same structural descriptions (Tellier 2006). Let G be a UCG over Σ × Cat(B).
Build R = 〈Q, Σ, γ, q0, F 〉 as follows:

• let N be the set of every subcategory of a category assigned to an element of Σ
in G (a category is a subcategory of itself). Then Q = N ∪ {F} with F /∈ N .
The initial state q0 = S, the final one is F .

• For every q ∈ Q, define a transition labeled by q between the state q and F

(that is, F ∈ γ(q, q)). For every A/B ∈ N , define a transition labelled by
A/B between the states A and B (B ∈ γ(A, A/B)). For every 〈w, C〉 ∈ G,
add a transition labelled by w between the states C and F (F ∈ γ(C, w)).

The example UCG of subsection 2.1. can be transformed into the RA of Figure
1. (after an easy simplification process has been applied for readability):

S IV F

S/IV CN

S/IV

John runs

man
a

Figure 1: RA equivalent with a UCG225



Isabelle Tellier

3. Learning by specialization

3.1. Learning rigid UCG from positive examples

A rigid CG G is a CG in which every word w ∈ Σ is assigned at most one category
C. Kanazawa has proved (Kanazawa 1998) that the set of every (bidirectional) CG is
learnable “in the limit” (i.e. in the sense of Gold 1967) from positive examples, i.e.
from sentences. Two distinct learning algorithms are now available for this purpose:
Kanazawa’s, derived from “BP” (Buszkowski and Penn 1990), is a generalization
strategy; the one proposed in (Moreau 2004) is a specialization strategy. It is the
latter, in its unidirectional version, that we will briefly recall here.

At its start, each member of the vocabulary used at least once in the available
example sentences is assigned a distinct variable. For example, for the sentences
{“John runs”, “a man runs”}, the initial assignment is A = {〈John, x1〉, 〈runs, x2〉,

〈a, x3〉, 〈man, x4〉}. A specifies a set of grammars: the set of CGs G such that there
exists an substitution h satisfying h(A) = {〈w, h(C)〉|〈w, C〉 ∈ A} ⊆ G. It is
obvious that the inital set A always specifies the whole set of rigid CGs built on Σ.

Then, each sentence is parsed with the assigments in A. The only possible way
to parse “John runs” with only FA is to substitute S/x2 to x1. This substitution is
a constraint that the variable x1 must satisfy: x1 is thus replaced by S/x2 in A.
To parse “a man runs”, two solutions are possible: either x3 = (S/x2)/x4, either
x3 = S/x5 and x4 = x5/x2 (with x5 a new variable). A then becomes a disjunction
of distinct possible sets of assignments. A combinatorial explosion can occur.

3.2. State merges and state splits

The previous algorithm can now be interpreted in terms of operations applying on
RA. As we have seen, A is a disjunction of sets of assignments. Each of these sets
can be transformed into a RA, as described in section 2.3.. What is the effect of a
constraint on a RA ?

For UCG, the constraints always take the form: xk = xl, with xk and xl already
introduced variables, or xk = Xm/Xn, with Xm and Xn any category built on the
set of every variables union S. The effect of a constraint of the form xk = xl on a
RA is a state merge. The effect of a constraint of the form xk = Xm/Xn can be
decomposed in three steps: (i) Xm/Xn replaces xk everywhere in the RA, (ii) every
subcategory of Xm and Xn (including themselves) becomes a new state, linked to
the state F by a transition labeled by its name, and every / inside Xm/Xn becomes
a transition, labeled by the fraction of the names of the linked states (at least, Xm

and Xn are linked by Xm/Xn), (iii) the states of the same name are merged.
This operation can be compared to the “state splitting strategy” proposed in (Fre-

douille and Miclet 2000) to learn finite state automata by specialization. For exam-
ple, the constraint x1 = S/x2 has the effect of splitting the state x1 into two new
states: S and x2 (then, as a state named x2 already exists, the new one is merged
with the previous one). But our specialization operation is more general, because of

226



Grammatical inference by specialization as a state splitting strategy

the recursive nature of the automata on which it applies. It is also better founded,
because it is the formal counterpart of well-defined substitutions.

4. Learning from typed examples

The idea of learning CGs from typed (in Montague’s sense) examples was introduced
in (Dudau-Sofronie et al. 2001). Montague’s types are derived from categories by a
morphism, and associated with the vocabulary in the sentences. They can be inter-
preted as semantic information available in the environment or previously learned.
We illustrate the learning strategy and its effects on RA on a simple example. Let:

a man runs
〈〈e, t〉, 〈〈e, t〉, t〉〉 〈e, t〉 〈e, t〉

(tx1(tx2e))x3(tx4e) tx5e tx6e

In this typed sentence, t and e are the usual montagovian basic types. The last
line is the result of a simple pre-treatment to reorder the types in a UCG fashion and
to introduce distinct variables at every place where an operator / could occur. When
we transform this initial assignment into a RA, we obtain three states (plus “F”), each
linked to the unique final state F, with their own name and “a”, “man” and “runs”
as respective labels. The learning algorithm applies as in section 3.1.: it consists in
trying to parse the sentence, by defining constraints on the variables.

In a first step, the only way to apply FA between two consecutive types of the
example is to define: x3 = /. This, as already seen, provokes a state split. But the
FA rule relying on the introduced operator can apply only if tx4e = tx5e, that is if
x4 = x5, which specifies a state merge. Not every couple of states can be merged at
this step: states are also semantically typed in the sense of (Coste et al. 2004). The
result of this step is the set: {〈a, (tx1(tx2e))/(tx4e)〉, 〈man, tx4e〉, 〈runs, tx6e〉},
corresponding with the first (simplified) RA of Figure 2.

In a second step, similar to the first one, we have: x1 = / and x2 = x6. The type
t, corresponding with the category S, is now a subcategory of an assigned category,
and a new state t playing the role of initial state is thus introduced. The RA obtained,
on the right in Figure 2., is isomorph to the one of Figure 1., and recognizes the initial
sentence. The types helped to cenverge to the correct solution quicker.

tx6e F

tx1(tx2e) tx4e

a
man

runs

t tx2e F

t/(tx2e) tx4e

t/(tx2e) runs

man
a

Figure 2: RA obtained when learning from typed examples
227



Isabelle Tellier

5. Conclusion

In this paper, we propose a new perspective on already known techniques. First, we
see that RA are able to represent the search space of a specialization learning algo-
rithm. In fact, as A is a disjunction of sets, the search space of Moreau’s algorithm
can be represented by a disjunction of RA. Second, we show that the algorithm to
learn CGs from typed examples proposed in (Dudau-Sofronie et al. 2001) is a spe-
cialization strategy with typed constraints. The initial semantic types associated with
the elements of the vocabulary specify some kind of maximal bound on the possible
splits to be performed, allowing to limit the combinatorial explosion of solutions.

Bibliography

Angluin, D.: 1982, Inference of reversible languages, J. ACM 29(3), 741–765
Buszkowski, W. and Penn, G.: 1990, Categorial grammars determined from linguis-

tic data by unification, Studia Logica 49, 431–454
Coste, F., Fredouille, D., Kermovant, C., and de la Higuera, C.: 2004, Introducing

domain and typing bias in automata inference, in proceedings of the 7th ICGI,
Vol. 3264 of LNAI, pp 115–126, Springer Verlag

Dudau-Sofronie, D., Tellier, I., and Tommasi, M.: 2001, Learning categorial gram-
mars from semantic types, in proceedings of the 13th Amsterdam Colloquium,
pp 79–84

Dupont, P., Miclet, L., and Vidal, E.: 1994, What is the search space of the regular
inference, in ICGI’94, Vol. 862 - Grammatical Inference and Applications of
LNAI, pp 25–37, Springer Verlag

Fredouille, D. and Miclet, L.: 2000, Experiences sur l’inference de langage par
specialisation, in proceedings of CAP’2000, pp 117–130

Gold, E.: 1967, Language identification in the limit, Inform. Control 10, 447–474
Kanazawa, M.: 1996, Identification in the limit of categorial grammars, Journal of

Logic, Language and Information 5(2), 115–155
Kanazawa, M.: 1998, Learnable Classes of Categorial Grammars, The European

Association for Logic, Language and Information, CLSI Publications
Moreau, E.: 2004, Apprentissage partiel de grammaires lexicalises, TAL 45(3),

71–102
Tellier, I.: 2005, When categorial grammars meet regular grammatical inference, in

proceedings of the 5th LACL, Vol. 4492 of LNAI, pp p.317–332, Springer Verlag
Tellier, I.: 2006, Learning recursive automata from positive examples, Revue

d’Intelligence Artificielle New Methods in Machine Learning(20/2006), 775–804
Woods, W. A.: 1970, Transition network grammars of natural language analysis,

Communications of the ACM (13), 591–606

228


	main-program.pdf
	tellier.pdf


