
ACHIEVING EXPRESSIVE COMPLETENESS AND
COMPUTATIONAL EFFICIENCY FOR UNDERSPECIFIED

SCOPE REPRESENTATIONS

CHRIS FOX AND SHALOM LAPPIN

Department of Computer Science
University of Essex

foxcj@essex.ac.uk

Department of Philosophy
King’s College London

shalom.lappin@kcl.ac.uk

The tension between expressive power and computational tractability poses an acute
problem for theories of underspecified semantic representation. In previous work
we have presented an account of underspecified scope representations within Prop-
erty Theory with Curry Typing (PTCT), an intensional first-order theory for natural
language semantics. Here we show how filters applied to the underspecified-scope
terms of PTCT permit both expressive completeness and the reduction of computa-
tional complexity in a significant class of non-worst case scenarios.

1. Introduction

In Fox and Lappin (2005a) we propose Property Theory with Curry Typing (PTCT)
as a formal framework for the semantics of natural language. PTCT allows fine-
grained distinctions of meaning without recourse to modal notions like (im)possible
worlds. It also supports a unified dynamic treatment of pronominal anaphora and VP
ellipsis, as well as related phenomena such as gapping and pseudo-gapping.

PTCT consists of three sublanguage components. The first component encodes a
property theory within a language of terms (an untyped λ-calculus). The second adds
dynamic Curry typing (Curry and Feys, 1958) to provide a system for expressing type
judgements for terms. The third uses a first-order logic to specify the truth-conditions
of the propositional subpart of the term language. Our semantic representation lan-
guage is first-order in character, rather than higher-order. We achieve the sort of
expressive power previously limited to higher-order theories within a formally more
constrained system. This provides an effective procedure for modelling inference in
natural language.

In Fox and Lappin (2005a,b) product types are used to generate underspeci-
fied semantic representations within PTCT, the representation language, rather than
through meta-language devices, which are invoked in most current treatments of un-
derspecification (Reyle, 1993; Bos, 1995; Blackburn and Bos, 2005; Copestake et al.,
1997). The expressive power of the language permits the formulation of filters on
scope readings that cannot be captured in other theories of underspecification which
rely on special purpose extra-linguistic operations and a weak system for constraint
specification.

These filters on underspecified scope terms can solve the problem of expres-
sive incompleteness that Ebert (2005) raises for other theories of underspecification.
They can also be used to reduce the complexity involved in computing the set of
possible scope readings that an underspecified term generates.

77

Chris Fox and Shalom Lappin

2. PTCT
PTCT is a first-order sysem in which types and propositions are terms over which
we can quantify. This allows rich expressiveness whilst restricting the system to first
order resources (Fox and Lappin, 2005a, Chapter 9).

The language of terms is the untyped λ-calculus, enriched with logical constants.
It is used to represent the interpretations of natural language expressions. It has no
internal logic, but when we add a proof theory, the simple language of types together
with the language of terms can be combined to produce a Curry-typed λ-calculus.

The syntactic rules of PTCT are flexible. They allow the generation of syntactic
expressions that have no intuitively meaningful interpretation. This does not under-
mine the system. The rules give a minimal characterisation of the syntax while our
proof theory and our model theory characterise the proper subset of well-formed
PTCT terms that constitute meaningful expressions.

In the first-order language of wffs we formulate type judgements for terms, and
truth conditions for those terms judged to be in Prop.

3. Underspecified Representations in PTCT
Generalised quantifiers (GQs) represent noun phrases. We follow Keenan (1992) and
van Eijck (2003) in taking a GQ to be an arity reduction operator that applies to a
relation r to yield either a proposition or a relation r′ that is produced by effectively
saturating one of r’s argument with the GQ.

We specify a family of functions perms scopek (where k > 1) that generate all
k! indexed permutation products of a k-ary indexed product term 〈t1, . . . , tk〉 as part
of the procedure for generating the set of possible scope readings of a sentence.

For our treatment of underspecification, perms scopek needs to take a k-ary
product of scope taking elements (by default, in the order in which they appear in
the surface syntax) and a k-ary relation representing the core proposition as its ar-
guments. The scope taking elements and the core representation can be combined
into a single product, e.g. as a pair consisting of the k-tuples of quantifiers as its first
element and the core relation as its second. The permutation function perms scopek
produces the k!-ary product of scoped readings. When a k-tuple of quantifiers is
permuted, the λ-operators that bind the quantified argument positions in the core
relation are effectively permuted in the same order as the quantifiers in the k-tuple.
This correspondence is necessary to preserve the connection between each GQ and
its argument position in the core relation across scope permutations.

A scope reading is generated by applying the elements of the k-tuple of quanti-
fiers in sequence to the core relation, reducing its arity with each such operation until
a proposition results. The ith scope reading is identified by projecting the ith ele-
ment of the indexed product of propositions that is the output of our perms scopek
function. Therefore, the PTCT term consisting of the application of perms scopek
to an input pair of a k-tuple of GQs and a core relation provides an underspecified
representation of the sentence corresponding to this term.

4. Filters and Expressive Completeness
Scope constraints can be formulated as filters on the k!-tuple of permutations of the
form 〈〈Qtuple1,Rel1〉, . . . , 〈Qtuplek!,Relk!〉〉 that perms scopek generates for an
argument pair 〈Qtuple1,Rel1〉. Each such filter is a Boolean property function that
imposes a condition on the elements of the k!-tuple.

78

Achieving Completeness and Efficiency for Underspecified Representations

Underspecified representations can be disambiguated by information acquired
through subsequent discourse. So, for example, resolving anaphoric expressions like
pronouns and definite descriptions in sentences following a statement that exhibits
scope ambiguity may eliminate certain readings of the antecedent.

(1) A: Every student wrote a program for some professor.
(2) B: Yes, I know the professor. She taught the Haskell course.
(3) C: I saw the programs, and they were all list-sorting procedures.

Identifying “some professor” in (1) as the antecedent for “the professor” and
“she” in (2) gives “some professor” scope over “every student” in (1). Interpreting
“a program” in (1) as the antecedent for “the programs” and “they” in (3) causes “a
program” to have narrow scope relative to “every student” in (1). Therefore, taken
conjointly (2) and (3) forces on (1) the fully resolved scope order

〈“some professor”, “every student”, “a program”〉

Assume that “every student” = Q1, “a program” = Q2, and “some professor” =
Q3. We can formulate the filters contributed by (2) and (3) as (4) and (5), respec-
tively (where GQ in =̂GQ abbreviates the appropriate type of Qi). In these filters
we take 〈Quants,Rel〉 to be a variable ranging over pairs in which Quants is a k-
tuple and Rel is a k-ary relation. As the k-tuples are indexed, there is a one-to-one
correspondence between the elements of a k-tuple and their respective indices. Let
tuple elem(i,Quants) = Qi if Qi is the ith member of Quants , and the distin-
guished term ω otherwise.

(4) λ〈Quants,Rel〉[∀̂iεNum∀̂jεNum((tuple elem(i,Quants) =̂GQ Q3 ∧̂
tuple elem(j,Quants) =̂GQ Q1) →̂
i <̂ j)]

(5) λ〈Quants,Rel〉[∀̂iεNum∀̂jεNum((tuple elem(i,Quants) =̂GQ Q1 ∧̂
tuple elem(j,Quants) =̂GQ Q2) →̂
i <̂ j)]

We specify the function filter tuple(〈F, T 〉) which maps a pair consisting of a
j-tuple F of filters and a k-tuple T to a k′-tuple (possibly the empty tuple) of all the
elements of T that satisfy each filter in F . We construct a PTCT term of the form
(6) to represent the k′-tuple obtained by applying the elements of F to the k!-tuple
that is the value of perms scopek(〈Quantsk,Rel〉).

(6) filter tuple(〈F, perms scopek(〈Quantsk,Rel〉)〉)

Ebert (2005) shows that most current theories of underspecification are expres-
sively incomplete to the extent that they cannot identify the proper subset of possible
scope readings specified by Boolean operations other than conjunction, and in par-
ticular by negation. He cites the following example to illustrate the problem.

(7) Every market manager showed five sales representatives a sample.

79

Chris Fox and Shalom Lappin

Ebert stipulates that, in his example, real world knowledge allows all scope per-
mutations except the one corresponding to 〈∃, 5,∀〉, where a sample takes wide
scope, five sales representatives intermediary position, and every market manager
narrow scope. He demonstrates that storage (Cooper, 1983; Pereira, 1990), hole
semantics (Bos, 1995; Blackburn and Bos, 2005), Minimal Recursion Semantics
(Copestake et al., 1997), and Normal Dominance Conditions (Koller et al., 2003)
cannot formulate underspecified representations that express the set containing only
the five remaining scope readings.

By contrast it is straightforward to formulate a filter in PTCT that rules out the
problematic scope sequence in Ebert’s case while permitting the five other readings.

(8) λ〈Quants,Rel〉[∀̂iεNum∀̂jεNum∀̂kεNum((tuple elem(i,Quants) =̂GQ Q∃
∧̂ tuple elem(j,Quants) =̂GQ Q5

∧̂ tuple elem(k,Quants) =̂GQ Q∀) →̂ ∼̂(i <̂ j ∧̂ j <̂ k))]

PTCT is, in principle, able to achieve expressive completeness in Ebert’s (2005)
sense.

5. Efficient Computation of Possible Scope Readings
At first glance it might seem that it is, in general, necessary to generate the full k!-
tuple that is the value of perms scopek(〈Quantsk,Rel〉) before applying the filters
of F to the elements of this k!-tuple in order to compute the value of (6). Fortunately,
this is not the case.

In Fox and Lappin (2005c) we present a tree construction algorithm for gener-
ating all possible permutations of a k-tuple. If this algorithm takes as its input the
triple 〈Q1, Q2, Q3〉, then it generates the following tree.

(9) 〈Q1〉hhhhhhhh
((((((((

〈Q1, Q2〉hhhhhh
((((((

〈Q1, Q2, Q3〉 〈Q1, Q3, Q2〉 〈Q3, Q1, Q2〉

〈Q2, Q1〉hhhhhh
((((((

〈Q2, Q1, Q3〉 〈Q2, Q3, Q1〉 〈Q3, Q2, Q1〉

Filters can apply as constraints to nodes in the tree as the algorithm produces
them. If a node violates a filter, then it is deleted, and the subtree that it dominates
is not generated. In this way filters can reduce the size of the tree, and so limit the
search space of possible scope readings that are explored for underspecified-scope
terms perms scopek(〈Quantsk,Rel〉) to a proper subset of the elements of the k!-
tuple that is its value.

So, for example, the filter Q1 < Q2 prunes the tree in (9) to give the one in (10).

(10) 〈Q1〉hhhhhh
((((((

〈Q1, Q2〉hhhhhh
((((((

〈Q1, Q2, Q3〉 〈Q1, Q3, Q2〉 〈Q3, Q1, Q2〉

〈Q2, Q1〉

Identifying the size of a tree with the number of its nodes, we can compute the
size of a tree T , |T |, through the formula

80

Achieving Completeness and Efficiency for Underspecified Representations

(11) |T | = Σi!, where i is the index of the ith element of the initial k-tuple which
the algorithm takes as its input.

Therefore, the size of the tree in (9) is 1! + 2! + 3! = 9. The size of the tree in
(10) is 6, which is a reduction of 30%.

The size of a subtree ST dominated by a node n at level i, but not including n,
is given by the formula

(12) |ST | = Πj (i < j ≤ k) + Σj′ (i < j′ < k).

Consider the quadruple 〈Q1, Q2, Q3, Q4〉. The tree algorithm produces an in-
dexed k!-tuple of 24 k-tuples as the leaves of a tree T4 with 4 levels and 33 nodes.
If a filter like Q1 < Q2 applies at level 2, the first branching node of T4, it prunes
the right-half of T4 under 〈Q2, Q1〉, and so it eliminates a subtree of 15 nodes, re-
ducing T4 by 15/33 = 45.4%. The remaining left side of T4 has the three nodes
〈Q1, Q2, Q3〉, 〈Q1, Q3, Q2〉, 〈Q3, Q1, Q2〉 at level 3. If the filter Q2 < Q3 ap-
plies at this level, the 8 leaf nodes under 〈Q1, Q3, Q2〉 and 〈Q3, Q1, Q2〉 are pruned.
Therefore, the conjunction of the filters Q1 < Q2 and Q2 < Q3 reduces T4 by 15 +
8 = 23 nodes, which is (approximately) 70% of the full tree.

It is not difficult to construct a plausible case in which the interpretation of a
sentence containing four quantified NPs is disambiguated by a conjunction of two
filters of this kind through anaphora resolution in subsequent discourse, as in A:
“It’s amazing. A critic recently reviewed two plays for every newspaper in a major
city.” B: “Yes, he published the same reviews of A Midsummer Night’s Dream and
New-Found-Land in every major paper in New York last week.”

Clearly, the earlier in the tree construction process (the higher up in the tree) that
a filter applies, the greater the reduction in search space of possible scope readings
that it achieves. It is also possible to optimise the interaction of filters and the tree
construction algorithm by specifying a procedure that reorders the elements of the
input k-tuple to permit the filters to apply at the earliest point in the generation of the
tree. So, for example, if the algorithm takes as its input the triple 〈Q1, Q2, Q3〉 and
one of the filters that apply to this triple is Q2 < Q3, then the reordering operation
will map the triple into 〈Q2, Q3, Q1〉. We will leave the formulation of this operation
for future work.

Ebert (2005) proves a theorem that entails that if a theory is expressively com-
plete, then it will, in the worst case, produce a combinatorial explosion equivalent to
generating all k! scope readings for a sentence. This result holds for PTCT in the
limit case, where no filters have been applied to a perms scopek(〈Quantsk,Rel〉)
term, or they do not operate early enough in the tree construction algorithm to re-
strict the scope permutation tree. However, as we have seen, there is a large class
of cases in which filters significantly reduce the search space through tree pruning,
and so they offer a mechanism for rendering scope disambiguation computationally
efficient.

6. Conclusion
We have formulated constraints on scope readings as filters on the k!-tuples that
perms scopek produces. These filters are PTCT terms which encode Boolean con-
ditions and quantification over the integers of indexed k-tuples. In principle, they
permit PTCT to achieve expressive completeness in the sense of Ebert (2005).

81

Chris Fox and Shalom Lappin

We have also invoked a tree generation algorithm to characterise (the permuta-
tion part of) the computable function that perms scopek denotes. When filters are
applied as constraints on nodes in the tree that the algorithm generates, they can
significantly reduce the search space of possible scope readings given by an under-
specified representation.

Underspecified representations, the projection of a particular scope interpre-
tation, and constraints on possible scope readings are all specified by appropri-
ately typed λ-terms within the semantic representation language, PTCT, rather than
through operations on schematic metalinguistic objects. Our proposed treatment
of underspecified representations within PTCT achieves both significant expressive
power and efficient computation of possible scope interpretations.

Acknowledgements
We are grateful to Christian Ebert for helpful comments on an earlier draft of this
paper. His recent Ph.D. dissertation has stimulated and influenced much of the work
we report here. We would also like to thank Dick Crouch and Ron Kaplan for useful
discussion of the complexity issues we address. The second author’s research was
supported by research grant number RES–000–23–0065 from the Economic and So-
cial Research Council of the United Kingdom.

References
Blackburn, P. and Bos, J.: 2005, Representation and Inference for Natural Language,

CSLI, Stanford
Bos, J.: 1995, Predicate logic unplugged, in Proceedings of the Tenth Amsterdam

Colloquium, Amsterdam, Holland
Cooper, R.: 1983, Quantification and Syntactic Theory, Synthese Language Library,

D. Reidel, Dordrecht
Copestake, A., Flickinger, D., and Sag, I. A.: 1997, Minimal Recursion Semantics,

Tech. rep., Stanford University, Stanford, CA, unpublished ms.
Curry, H. B. and Feys, R.: 1958, Combinatory Logic, vol. 1 of Studies in Logic,

North Holland
Ebert, C.: 2005, Formal Investigation of Underspecified Representations, Ph.D. the-

sis, Department of Computer Science, King’s College London, unpublished
van Eijck, J.: 2003, Computational Semantics and Type Theory, unpublished ms.,

CWI, Amsterdam
Fox, C. and Lappin, S.: 2005a, Formal Foundations of Intensional Semantics, Black-

well, Oxford
Fox, C. and Lappin, S.: 2005b, Underspecified interpretations in a Curry-typed rep-

resentation language, The Journal of Logic and Computation 15, 131–143
Fox, C. and Lappin, S.: 2005c, Expressive Completeness and Computational Effi-

ciency for Underspecified Representations, unpublished ms., University of Essex
and King’s College London

Keenan, E.: 1992, Beyond the Fregean boundary, Linguistics and Philosophy 15,
199–221

Koller, A., Niehren, J., and Thater, S.: 2003, Bridging the gap between underspeci-
fied formalisms: Hole semantics as dominance constraints, in Proceedings of 11th
EACL, Budapest

Pereira, F.: 1990, Categorial semantics and scoping, Computational Linguistics 16,
1–10

Reyle, U.: 1993, Dealing with ambiguities by underspecification: Construction, rep-
resentation and deduction, Journal of Semantics 10, 123–179

82

