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The paper proposes categorial analyses for coordination with multiple conjuncts,
correlative coordination, and respectively coordination. It argues that in a categorial
setting these phenomena can only be adequately analysed if a data structure of lists
is introduced. To this purpose the Lambek Calculus is extended with the Kleene
star, a connective that has aready been explored in other substructural logics. Cor-
respondingly, the A calculusis extended with list-forming operators as motivated by
the analysis of the coordination phenomena.

1. Introduction

Like other syntactic theories, categorial grammar is concerned with the composi-
tion of form and meaning, i.e. the definition of grammatically well-formed strings
and their interpretation. In categoria grammar, the Curry—Howard correspondence
makes sure that the two processes are so tightly coupled that they constrain each
other in a non-trivial way. Formally, the object of investigation in grammar is the
set £ of grammatically well-formed strings of words or categories. Categorial gram-
mar provides an infinite supply of categoriesinductively defined from afinite set of
atomic categories and two type-forming connectives, the leftward slash (\) and the
rightward slash (/). The compound categories can be defined in terms of the more
basic categories (1); here - denotes string concatenation.

1) a X\Y={zel:VyeY:z-yeX}
b. X)Y={zel:VyeY:y-zeX}

Standing for “incomplete” expressions, compound categories can be interpreted as
functions: 7(X\Y) = 7(X/Y) = 7(X)"(). Another characteristic of categorial
grammar is its view on syntactic derivation: Parsing is seen as a form of reasoning
that can be couched in a deductive system like the Associative Lambek Calculus
(ALC) (Lambek 1958). ALC providesfor every type-forming connective a left rule
(which eliminates the connectivein one of the premises) and aright rule (which deals
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with the connective in the conclusion). Right rules are associated with operations
that construct new data structures (e.g. functionsin ALC); left rules correspond to
operations that deconstruct.

2 a X:t=X:t Id

T=Y:t X:t{t"))=>2Z:¢" T,V :z=> X :t

L — R

b, DXV t,T|= Z: ¢ / To XV oat Y

T=Y:¢ TX:t@t))=2Z:t L\ Y:x,T:>X:tR\
C. O, X\Y :t]= Z: t" T=X\Y: )zt

This paper argues for the need of an additional type-forming connectivein cate-
gorial grammar, which stands for lists. Lists of this kind have already been used in
other substructural logics (Restall 2000) for the purpose of the verification of loops
in programs.In the computational literature, the connective has been expressed by
the Kleene star, a practice that we will follow. The paper argues that certain cases of
coordination cannot be analysed in a manner compliant to the Curry—Howard corre-
spondence unless a data structure for lists is assumed during syntactic composition.

2. Multi—-Conjunct Coordination

Thefirst puzzleisthe ability of coordinating conjunction to take an arbitrary number
of arguments. As each subcategorization frame is expressed with a different lexical
entry in categorial grammar, this means that infinitely many entries are associated
with a coordinating conjunction.

(3) and: (X\NXO\NXN\X)/X : Azgdzs Az Az Mazg Mxs My

To ensure afinite lexicon, a connective is required that can represent category lists
of arbitrary length (also cf. (Morrill 1994, 212)): the Kleene star. In (4a), individual
list items are separated by commas (just as conjuncts are in written language).

(4) X* = UnZl X"whereX! = X and X"+ = {1‘1','.’1‘2 txp € X, 29 € Xn}
Starred categories are interpreted as n-tuples of category denotations (5).
6) 7(X7) = U, 7(X)"

For interpretation, we need to equip the semantic representation language (i.e. the
lambda calculus) with operators for constructing and deconstructing list objects.
Lists are constructed inductively with two operators (single-item lists with {.)),
multiple-item lists with list concatenation +). A single item-list denotes its sole
member ([{(z)] = [«]); list concatenation is defined in (6).

6) [Li+ L] ={(x1- - Tn,y1...Ym): (xT1...2n) €[L1] A
(y1--.ym) € [L2] }
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List objects can be reconverted into basic objects with the join operation. The join-
operator uses the binary operation o to reconnect the list items. An inductive defini-
tionisgivenin 7. Thetwo clauses also function as 3 reduction rules.

(7) join(o, (z))) = =
join(o, Ly + Ly) = o(join(o, L1),join(o, Ls))

With al these operators available, we can state the lexical entry of coordinating
conjunctions (8). In contrast to entry (3), the entry (8) only introduces exactly one
occurrence of the conjunction connective M. Multiplication of this connective is
carried out by S—reduction (7). It is often useful to include the last conjunct in the
conjunct list as well. This can be achieved by wrapping the conjunction around the
last conjunct, e.g. with the help of an additional polymorphicvariableY” (8).

(8) and: (X\(X*/Y))/Y : MAPjoin(, P(t))

In compliance with the Curry—Howard correspondence, each operator is associated
with a proof rule. The two right rules R* and M* are adopted from Restall (2000,
55f).

T=>X:x

© aT=x (@)

P=X":Li Q=X":Ls
b. P,Q:>X*ZL1+L2

M*

X:a, X:b=>X:c T[X:join(Abha.c,L)]=>Z: 2z
C. MNX*:Ll=2Z:z

L*y

3. Partial Distribution in Multi-Conjunct Coor dination

By now, we have two operators for constructing lists and one operator for decon-
structing lists. A fourth operator can be used to apply functionsto lists directly. The
map-operator, inductively defined in (10), modifiesalist L by applying afunction f
to each list item. Again the two clauses also function as 5 reduction rules.

(10) map(f, (=) = (f(2))
map(f, L1 + L2) = map(f, Li) + map(f, L2)

The proof rule for the map operator, again aleft rule, isgivenin (11).

MNX:z]=Y:y
(11) I'[X*: L] = Y* : map(Az.y, L)

*
2
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In an analysis of coordination, the map operator can be used to distribute over con-
juncts. In casesthat require such distribution, afunctor f which syntactically applies
to a coordination semantically appliesto each of the conjuncts. The idea of the anal-
ysisisasfollows: Thelist typesallow to separate the task of collecting the conjuncts
(rulesR* and M*) from the application of the conjunction functor (ruleL* 1). Hence
ascopal item can get scope over al conjuncts without leaving the scope of conjunc-
tion: by applyingto thelist (ruleL*5).

A syntactic account of distribution has certain advantages with respect to effects
that concern theinterplay of syntax and semantics. Larson (1985, 220) has observed
that the placement of the correlate of a coordinating conjunction fixes the conjunc-
tion's semantic scope. So, the position of the correlate in example (12) enforces
wide scope for the disjunction. The effect follows if we assume that the correlate is
picked up asthe last argument of the conjunction (so that e.g. or would get the entry
((X\either)\(X*/Y))/Y).

(12) Mary is either looking for amaid or a cook.

Hudson (1989, 89) discusses cases where a functor is only partially distributed, i.e.
distributed not over the entire conjunct list, but only over a contiguous sublist (13).

(13) a intheUnited States, (the) Netherlands and in England
b. either in England, in the United States or (the) Netherlands

Cases of partia distribution provide strong motivation for the assumption that list
formation and conjunct interpretation should be separated. Only such afactorization
allows the propagation of the conjunction connective to sublists that do not include
the coordinating conjunction. To analyse partial distribution, a list must be decom-
posable into arbitrary sublists. Hence, a genera operation of list composition (as
in rule M*) is required; it would not suffice to only consider lists of a string-like
structure, i.e. lists where aalways a single element is prepended or appended.

4. Respectively—Coordination

A third argument for a process of list formationis provided by respectively—coordin-
ation (ResC). In ResC severa surface conjunctions are conflated to a single functor
on the semantic form (14).

(14) John and Peter love Mary and hate Sue, respectively.
love(j,m) A hate(p,s)

An occurrence of ResC consists of at least two coordinations. All but one coordina-
tion are modified by the adverb respectively. We will call the unique coordination
without respectively the governing member, and al other coordinations the depen-
dent members. Occurrences of ResC with more than two members (cf. (15) from
(Schachter 1973, 390)) can be regarded as recursive applications of binary ResC.
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(15) [John and Bill went to New York and Chicago respectively] on Monday and
Wednesday respectively.

Each member coordination must have exactly the same number of conjuncts (or,
as we shall say, the same arity). In the interpretation, the conjuncts of the members
are correlated so that every i-th conjunct relates to the other i-th conjuncts. The
correlating behaviour is reminiscent of the scalar product (16).

(16) (z1,---2n) - (Y15 Yn) = T2Y1 + - + TnYn

The scalar product will be taken as aguidelinein devel opping atheory of ResC. The
fact that ResC can be stacked (cf. example (15)) makes necessary an adjustment,
however. The linguistic operation, which will be called vecp for vector product,
transformsits two argument lists not into a basic object but into yet another list. The
operation is inductively be defined in (17). Again the definition clauses of (17) also
serve as J—eduction rules.

(17) veep(f, (1)), , (@2) = (f(z1)(z2))
veep(f, (#1)) + L1, (x2)) + L2) = {(f(w1)(22))) + vecp(f, L1, L2)
vecp(f, L, (La + L3) + L4) = vecp(f, L1, La + (L3 + L))
vecp(f, (L1 + L2) + L3, L) = vecp(f, L1 + (L2 + L3), L4)

vecp istheonly list operator for which order isrelevant. But for vecp and ResC, mul-

tisets could have been used instead of lists. By the Curry—Howard correspondence,
vecp can be correlated with the following left rule (18).

X:z,Y:y=U:u T[U*:veep(AzAy.u,Li,L2)] = Z

L*
(18) T[X*:L, Y*: L)]= Z ’

The analysis has to come to grips with the fact that in the final representation the
coordinating conjunctions of all member coordinations are conflated to just onein-
stance. We assume that this instance is triggered by the governing member. Con-
junctions in dependent coordinations merely pass on their conjunct lists (19).

(19) and ((X* | respectively)\(X*/Y))/Y : MAPAr.P(%)

The conjunction in the governing coordination has a local effect (essentially null)
and a global effect (introducing its meaning). In this respect it is similar to quanti-
fiers, and the techniques used for quantifier raising may be applied (e.g. wrapping,
polymorphism, or alexical entry communicating with aunary rule).

(20) and locally: (X*\(X*/Y))/Y : MAP.P(t)
globaly: X | X*: ALjoin(r, L)

We assume that some modality or feature mechanism controls the communication
between the rules and lexical entriesin (18, 19, 20) and ensures e.g. the presence of
exactly one governing coordination and at |east two members.
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The consequences of ResC for the complexity of syntax have been hotly debated
intheliterature. ResC has been used as an argument that natural languageis not even
mildly context-sensitive (Kac 1987). To salvage context-freeness, it isimportant that
the same—arity restriction be tested not before in semantics. That semantics plays
an important role is obvious in constructions with plural noun phrases (21): The
number of partition cells, though relevant for ResC, has no reflex in syntax (Pullum
and Gazdar 1982, 500.fn(10)).

(21) during the period of squabbling between court factions supporting Russia or
Japan respectively (BNC)

Inthe analysis presented here, the arity restriction is not checked during composition
but rather during S—reduction (17). For invalid sentences, the parser produces a
result, but the result includes unreduced lists.

5. Conclusion

The paper has argued for the necessity of including lists in the categorial analysis of
coordination. First, without lists, either the phrase structure rule base or the catego-
ria lexicon will cease to be finite, as a single coordinating conjunction can connect
arbitrarily many conjuncts. Second, lists allow for an explicit modelling of distri-
bution over conjuncts. Such a treatment is needed e.g. to adequately express the
mutual restrictions between syntax and options for distribution. It is aso needed to
account for partial distribution, i.e. distribution over only a subset of conjunctsin
a multi—conjunct coordination. Finally, lists are a handy tool in analysing respec-
tively coordination. | would like to thank Hans Kamp, Kristina Spranger, and an
anonymous reviewer for their helpful comments.
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